Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Galois groups of quantum group actions and regularity of fixed-point algebras


Author: Takehiko Yamanouchi
Journal: Trans. Amer. Math. Soc. 355 (2003), 2813-2828
MSC (2000): Primary 46L65; Secondary 22D25, 46L10, 81R50
DOI: https://doi.org/10.1090/S0002-9947-03-03282-3
Published electronically: March 12, 2003
MathSciNet review: 1975401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that, for a minimal and integrable action of a locally compact quantum group on a factor, the group of automorphisms of the factor leaving the fixed-point algebra pointwise invariant is identified with the intrinsic group of the dual quantum group. It is proven also that, for such an action, the regularity of the fixed-point algebra is equivalent to the cocommutativity of the quantum group.


References [Enhancements On Off] (What's this?)

  • 1. H. Araki, R. Haag, D. Kastler and M. Takesaki, Extension of KMS states and chemical potential, Commun. Math. Phys., 53 (1977), 97-134. MR 56:2042
  • 2. J. De Cannière, On the intrinsic group of a Kac algebra, Proc. London Math. Soc., 40 (1980), 1-20. MR 83d:46079
  • 3. J. Dixmier and O. Maréchal, Vecteurs totalisateurs d'une algèbre de von Neumann, Commun. Math. Phys., 22 (1971), 44-50. MR 45:5767
  • 4. M. Enock, Sous-facteurs intermédiaires et groupes quantiques mesurés, J. Operator Theory, 42 (1999), 305-330. MR 2000i:46057
  • 5. M. Enock and J.-M. Schwartz, Systèmes dynamiques généralisés et correspondances, J. Operator Theory, 11 (1984), 273-303. MR 86g:46097
  • 6. M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, Berlin (1992). MR 94e:46001
  • 7. M. Izumi, R. Longo and S. Popa, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal., 155 (1998), 25-63. MR 2000c:46117
  • 8. H. Kosaki, Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140. MR 87g:46093
  • 9. J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup., $4^{e}$ série, t. 33 (2000), 837-934. MR 2002f:46108
  • 10. J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebra setting, To appear in Math. Scand..
  • 11. M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup., $4^{e}$ série, t. 19 (1986), 57-106. MR 87m:46120
  • 12. J.-M. Schwartz, Sur la structure des algèbres de Kac, I, J. Funct. Anal., 34 (1979), 370-406. MR 83a:46072a
  • 13. S. Stratila, Modular theory in operator algebras, Abacus Press, Tunbridge Wells, 1981. MR 85g:46072
  • 14. M. Takesaki, The structure of a von Neumann algebra with a homogeneous periodic state, Acta Math., 131 (1973), 79-121. MR 55:11067
  • 15. T. Teruya and Y. Watatani, Lattices of intermediate subfactors for type III factors, Arch. Math., 68 (1997), 454-463. MR 98d:46071
  • 16. S. Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal., 180 (2001), 426-480. MR 2002a:46100
  • 17. T. Yamanouchi, On dominancy of minimal actions of compact Kac algebras and certain automorphisms in $\text{Aut}(\mathcal{A}/\mathcal{A}^{\alpha})$, Math. Scand., 84 (1999), 297-319. MR 2000g:46101
  • 18. T. Yamanouchi, The Connes spectrum for actions of compact Kac algebras and factoriality of their crossed products, Hokkaido Math. J., 28 (1999), 409-434. MR 2000g:46100
  • 19. T. Yamanouchi, Uniqueness of Haar measures for a quasi Woronowicz algebra, Hokkaido Math. J., 30 (2001), 105-112. MR 2002e:46075
  • 20. T. Yamanouchi, Description of the automorphism group $\text{Aut}(\mathcal{A}/\mathcal{A}^{\alpha})$ for a minimal action of a compact Kac algebra and its application, J. Funct. Anal., 194 (2002), 1-16.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L65, 22D25, 46L10, 81R50

Retrieve articles in all journals with MSC (2000): 46L65, 22D25, 46L10, 81R50


Additional Information

Takehiko Yamanouchi
Affiliation: Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810 Japan
Email: yamanouc@math.sci.hokudai.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-03-03282-3
Keywords: Locally compact quantum group, action, factor, regularity
Received by editor(s): June 24, 2002
Received by editor(s) in revised form: November 6, 2002
Published electronically: March 12, 2003
Dedicated: Dedicated to Professor Masamichi Takesaki on the occasion of his seventieth birthday
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society