Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



West's problem on equivariant hyperspaces and Banach-Mazur compacta

Author: Sergey Antonyan
Journal: Trans. Amer. Math. Soc. 355 (2003), 3379-3404
MSC (2000): Primary 57N20, 57S10, 54B20, 54C55, 55P91, 46B99
Published electronically: April 8, 2003
Corrigendum: Trans. Amer. Math. Soc. 358 (2006), 5631-5633.
MathSciNet review: 1974693
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a compact Lie group, $X$ a metric $G$-space, and $\exp X$ the hyperspace of all nonempty compact subsets of $X$ endowed with the Hausdorff metric topology and with the induced action of $G$. We prove that the following three assertions are equivalent: (a) $X$ is locally continuum-connected (resp., connected and locally continuum-connected); (b) $\exp X$ is a $G$-ANR (resp., a $G$-AR); (c) $(\exp X)/G$ is an ANR (resp., an AR). This is applied to show that $(\exp G)/G$ is an ANR (resp., an AR) for each compact (resp., connected) Lie group $G$. If $G$ is a finite group, then $(\exp X)/G$ is a Hilbert cube whenever $X$ is a nondegenerate Peano continuum. Let $L(n)$ be the hyperspace of all centrally symmetric, compact, convex bodies $A\subset \mathbb{R}^n$, $n\ge 2$, for which the ordinary Euclidean unit ball is the ellipsoid of minimal volume containing $A$, and let $L_0(n)$ be the complement of the unique $O(n)$-fixed point in $L(n)$. We prove that: (1) for each closed subgroup $H\subset O(n)$, $L_0(n)/H$ is a Hilbert cube manifold; (2) for each closed subgroup $K\subset O(n)$ acting non-transitively on $S^{n-1}$, the $K$-orbit space $L(n)/K$ and the $K$-fixed point set $L(n)[K]$ are Hilbert cubes. As an application we establish new topological models for tha Banach-Mazur compacta $L(n)/O(n)$ and prove that $L_0(n)$ and $(\exp S^{n-1})\setminus\{S^{n-1}\}$ have the same $O(n)$-homotopy type.

References [Enhancements On Off] (What's this?)

  • 1. Herbert Abels, Parallelizability of proper actions, global 𝐾-slices and maximal compact subgroups, Math. Ann. 212 (1974/75), 1–19. MR 0375264
  • 2. S. A. Antonjan, Retracts in categories of 𝐺-spaces, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 15 (1980), no. 5, 365–378, 417 (Russian, with English and Armenian summaries). MR 604847
  • 3. S. A. Antonyan, Equivariant generalization of Dugundji’s theorem, Mat. Zametki 38 (1985), no. 4, 608–616, 636 (Russian). MR 819426
  • 4. Sergey Antonian, An equivariant theory of retracts, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 251–269. MR 787832
  • 5. S. Antonian, Equivariant embeddings into 𝐺-ARs, Glas. Mat. Ser. III 22(42) (1987), no. 2, 503–533 (English, with Serbo-Croatian summary). MR 957632
  • 6. S. A. Antonyan, Retraction properties of an orbit space, Mat. Sb. (N.S.) 137(179) (1988), no. 3, 300–318, 432 (Russian); English transl., Math. USSR-Sb. 65 (1990), no. 2, 305–321. MR 976513
  • 7. S. A. Antonyan, Retraction properties of an orbit space. II, Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145–146 (Russian); English transl., Russian Math. Surveys 48 (1993), no. 6, 156–157. MR 1264160, 10.1070/RM1993v048n06ABEH001095
  • 8. Sergey A. Antonyan, The Banach-Mazur compacta are absolute retracts, Bull. Polish Acad. Sci. Math. 46 (1998), no. 2, 113–119. MR 1631246
  • 9. Sergey A. Antonyan, The topology of the Banach-Mazur compactum, Fund. Math. 166 (2000), no. 3, 209–232. MR 1809416
  • 10. Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166
  • 11. Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
  • 12. T. A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR 0423357
  • 13. D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), no. 2, 139–152. MR 563538
  • 14. D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), no. 3, 201–221. MR 804034, 10.1016/0166-8641(85)90089-6
  • 15. James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
  • 16. P. Fabel, The Banach-Mazur compactum $Q(2)$ is an absolute retract, in: Topology and Applications (International Topological Conference dedicated to P. S. Alexandroff's 100th birthday, Moscow, May 27-31, 1996), p. 57, Moscow, 1996.
  • 17. R. E. Heisey and J. E. West, Orbit spaces of the hyperspace of a graph which are Hilbert cubes, Colloq. Math. 56 (1988), no. 1, 59–69. MR 980511
  • 18. David W. Henderson, 𝑍-sets in ANR’s, Trans. Amer. Math. Soc. 213 (1975), 205–216. MR 0391008, 10.1090/S0002-9947-1975-0391008-3
  • 19. Alejandro Illanes and Sam B. Nadler Jr., Hyperspaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 216, Marcel Dekker, Inc., New York, 1999. Fundamentals and recent advances. MR 1670250
  • 20. I. M. James and G. B. Segal, On equivariant homotopy theory, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 316–330. MR 585665
  • 21. Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
    Fritz John, Collected papers. Vol. 2, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1985. Edited by Jürgen Moser. MR 809787
  • 22. Takao Matumoto, On 𝐺-𝐶𝑊 complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363–374. MR 0345103
  • 23. J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
  • 24. John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 0077932
  • 25. Sam B. Nadler Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions; Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. MR 0500811
  • 26. R. Palais, The classification of $G$-spaces, Memoirs of the Amer. Math. Soc. 36, Providence, RI, 1960.
  • 27. Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • 28. H. Toruńczyk, On 𝐶𝐸-images of the Hilbert cube and characterization of 𝑄-manifolds, Fund. Math. 106 (1980), no. 1, 31–40. MR 585543
  • 29. H. Toruńczyk and J. E. West, The fine structure of 𝑆¹/𝑆¹; a 𝑄-manifold hyperspace localization of the integers, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 439–449. MR 656786
  • 30. J. de Vries, Topics in the theory of topological transformation groups, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 291–304. MR 565849
  • 31. Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
  • 32. James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1–25. MR 0266147, 10.1090/S0002-9947-1970-0266147-3
  • 33. J. E. West, Induced involutions on Hilbert cube hyperspaces, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976), Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 281–293. MR 0515650
  • 34. Jan van Mill and George M. Reed (eds.), Open problems in topology, North-Holland Publishing Co., Amsterdam, 1990. MR 1078636
  • 35. M. Wojdyslawski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.
  • 36. R. Y. T. Wong, Noncompact Hilbert cube manifolds, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57N20, 57S10, 54B20, 54C55, 55P91, 46B99

Retrieve articles in all journals with MSC (2000): 57N20, 57S10, 54B20, 54C55, 55P91, 46B99

Additional Information

Sergey Antonyan
Affiliation: Departamento de Matematicas, Facultad de Ciencias, UNAM, Ciudad Universitaria, México D.F. 04510, México

Keywords: Banach-Mazur compacta, $G$-ANR, $Q$-manifold, hyperspace, orbit space, homotopy type, $G$-nerve
Received by editor(s): May 1, 2000
Received by editor(s) in revised form: September 15, 2002
Published electronically: April 8, 2003
Additional Notes: The author was supported in part by grant IN-105800 from PAPIIT (UNAM)
Article copyright: © Copyright 2003 American Mathematical Society