Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality


Authors: V. Braungardt and D. Kotschick
Journal: Trans. Amer. Math. Soc. 355 (2003), 3217-3226
MSC (2000): Primary 57R17, 57R57, 14H10
DOI: https://doi.org/10.1090/S0002-9947-03-03290-2
Published electronically: April 24, 2003
MathSciNet review: 1974683
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove upper bounds for the number of critical points in semi- stable symplectic Lefschetz fibrations. We also obtain a new lower bound for the number of nonseparating vanishing cycles in Lefschetz pencils and reprove the known lower bounds for the commutator lengths of Dehn twists.


References [Enhancements On Off] (What's this?)

  • 1. J. Amorós, F. Bogomolov, L. Katzarkov and T. Pantev, Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geometry 54 (2000), 489-545. MR 2002g:57051
  • 2. A. Beauville, Complex algebraic surfaces, Cambridge University Press, 1983. MR 85a:14024
  • 3. A. Beauville, The Szpiro inequality for higher genus fibrations, Preprint arXiv:math. AG/0109080.
  • 4. F. Bogomolov, L. Katzarkov and T. Pantev, Hyperelliptic Szpiro inequality, Preprint arXiv:math.GT/0106212.
  • 5. S. K. Donaldson and I. Smith, Lefschetz pencils and the canonical class for symplectic $4$-manifolds, Preprint arXiv:math.SG/0012067.
  • 6. H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), 169-175. MR 2001m:57046
  • 7. R. E. Gompf and A. I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Math., vol. 20, Amer. Math. Soc., Providence, RI, 1999. MR 2000h:57038
  • 8. M. Korkmaz, Commutators in mapping class groups and bounded cohomology, Preprint arXiv:math.GT/0012162.
  • 9. D. Kotschick, Signatures, monopoles and mapping class groups, Math. Research Letters 5 (1998), 227-234. MR 99d:57023
  • 10. T.-J. Li, Symplectic Parshin-Arakelov inequality, Internat. Math. Research Notices 2000, 941-954. MR 2001i:57038
  • 11. A.-K. Liu, Some new applications of the general wall crossing formula, Gompf's conjecture and its applications, Math. Research Letters 3 (1996), 569-585. MR 97k:57038
  • 12. I. Smith, Geometric monodromy and the hyperbolic disc, Quart. J. Math. 52 (2001), 217-228. MR 2002c:57046
  • 13. I. Smith, Serre-Taubes duality for pseudoholomorphic curves, Preprint arXiv:math. SG/0106220.
  • 14. A. I. Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Research Letters 6 (1999), 449-456. MR 2000g:57046
  • 15. A. I. Stipsicz, Singular fibers in Lefschetz fibrations on manifolds with $b_{2}^{+}=1$, Topology Appl. 117 (2002), 9-21. MR 2002j:57048
  • 16. L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque 183 (1990), 7-18. MR 91g:11059
  • 17. C. H. Taubes, SW $\Rightarrow$ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves, Jour. Amer. Math. Soc. 9 (1996), 845-918. MR 97a:57033

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R17, 57R57, 14H10

Retrieve articles in all journals with MSC (2000): 57R17, 57R57, 14H10


Additional Information

V. Braungardt
Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresien- strasse 39, 80333 München, Germany
Email: Volker.Braungardt@mathematik.uni-muenchen.de

D. Kotschick
Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresien- strasse 39, 80333 München, Germany
Email: dieter@member.ams.org

DOI: https://doi.org/10.1090/S0002-9947-03-03290-2
Received by editor(s): September 10, 2002
Published electronically: April 24, 2003
Additional Notes: Support from the \sl Deutsche Forschungsgemeinschaft is gratefully acknowledged. The authors are members of the \sl European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society