The periodic EulerBernoulli equation
Author:
Vassilis G. Papanicolaou
Journal:
Trans. Amer. Math. Soc. 355 (2003), 37273759
MSC (2000):
Primary 34B05, 34B10, 34B30, 34L40, 74B05
Published electronically:
May 29, 2003
MathSciNet review:
1990171
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We continue the study of the Floquet (spectral) theory of the beam equation, namely the fourthorder eigenvalue problem
where the functions and are periodic and strictly positive. This equation models the transverse vibrations of a thin straight (periodic) beam whose physical characteristics are described by and . Here we develop a theory analogous to the theory of the Hill operator . We first review some facts and notions from our previous works, including the concept of the pseudospectrum, or spectrum. Our new analysis begins with a detailed study of the zeros of the function , for any given ``quasimomentum'' , where is the FloquetBloch variety of the beam equation (the Hill quantity corresponding to is , where is the discriminant and the period of ). We show that the multiplicity of any zero of can be one or two and (for some ) if and only if is also a zero of another entire function , independent of . Furthermore, we show that has exactly one zero in each gap of the spectrum and two zeros (counting multiplicities) in each gap. If is a double zero of , it may happen that there is only one Floquet solution with quasimomentum ; thus, there are exceptional cases where the algebraic and geometric multiplicities do not agree. Next we show that if is an open gap of the pseudospectrum (i.e., ), then the Floquet matrix has a specific Jordan anomaly at and . We then introduce a multipoint (Dirichlettype) eigenvalue problem which is the analogue of the Dirichlet problem for the Hill equation. We denote by the eigenvalues of this multipoint problem and show that is also characterized as the set of values of for which there is a proper Floquet solution such that . We also show (Theorem 7) that each gap of the spectrum contains exactly one and each gap of the pseudospectrum contains exactly two 's, counting multiplicities. Here when we say ``gap'' or ``gap'' we also include the endpoints (so that when two consecutive bands or bands touch, the inbetween collapsed gap, or gap, is a point). We believe that can be used to formulate the associated inverse spectral problem. As an application of Theorem 7, we show that if is a collapsed (``closed'') gap, then the Floquet matrix is diagonalizable. Some of the above results were conjectured in our previous works. However, our conjecture that if all the gaps are closed, then the beam operator is the square of a secondorder (Hilltype) operator, is still open.
 1.
J.
E. Avron and B.
Simon, Analytic properties of band functions, Ann. Physics
110 (1978), no. 1, 85–101. MR 0475384
(57 #14992)
 2.
A. BADANIN AND E. KOROTYAEV, Quasimomentum of Fourth Order Periodic Operator, preprint, 2001.
 3.
V. BARCILON, Inverse Problem for a Vibrating Beam in the FreeClamped Configuration, Philosophical Transactions of the Royal Society of London, Series A, 304 (1982), 211251.
 4.
R.
Beals and R.
R. Coifman, Scattering and inverse scattering for first order
systems, Comm. Pure Appl. Math. 37 (1984),
no. 1, 39–90. MR 728266
(85f:34020), http://dx.doi.org/10.1002/cpa.3160370105
 5.
Richard
Beals, Percy
Deift, and Carlos
Tomei, Direct and inverse scattering on the line, Mathematical
Surveys and Monographs, vol. 28, American Mathematical Society,
Providence, RI, 1988. MR 954382
(90a:58064)
 6.
Robert
Carlson, Compactness of Floquet isospectral
sets for the matrix Hill’s equation, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2933–2941. MR 1709743
(2000m:34027), http://dx.doi.org/10.1090/S0002993900056343
 7.
Robert
Carlson, Eigenvalue estimates and trace formulas for the matrix
Hill’s equation, J. Differential Equations 167
(2000), no. 1, 211–244. MR 1785119
(2001e:34157), http://dx.doi.org/10.1006/jdeq.2000.3785
 8.
Lester
F. Caudill Jr., Peter
A. Perry, and Albert
W. Schueller, Isospectral sets for fourthorder ordinary
differential operators, SIAM J. Math. Anal. 29
(1998), no. 4, 935–966 (electronic). MR 1617706
(99c:34022), http://dx.doi.org/10.1137/S0036141096311198
 9.
Earl
A. Coddington and Norman
Levinson, Theory of ordinary differential equations,
McGrawHill Book Company, Inc., New YorkTorontoLondon, 1955. MR 0069338
(16,1022b)
 10.
Walter
Craig, The trace formula for Schrödinger operators on the
line, Comm. Math. Phys. 126 (1989), no. 2,
379–407. MR 1027503
(90m:47063)
 11.
B.
A. Dubrovin, Igor
Moiseevich Krichever, and S.
P. Novikov, Integrable systems. I, Current problems in
mathematics. Fundamental directions, Vol.\
4, Itogi Nauki i Tekhniki,
Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985,
pp. 179–284, 291 (Russian). MR 842910
(87k:58112)
 12.
B.
A. Dubrovin, V.
B. Matveev, and S.
P. Novikov, Nonlinear equations of Kortewegde Vries type,
finiteband linear operators and Abelian varieties, Uspehi Mat. Nauk
31 (1976), no. 1(187), 55–136 (Russian). MR 0427869
(55 #899)
 13.
Nelson
Dunford and Jacob
T. Schwartz, Linear operators. Part II, Wiley Classics
Library, John Wiley & Sons Inc., New York, 1988. Spectral theory.
Selfadjoint operators in Hilbert space; With the assistance of William G.
Bade and Robert G. Bartle; Reprint of the 1963 original; A
WileyInterscience Publication. MR 1009163
(90g:47001b)
 14.
Allan
Finkel, Eli
Isaacson, and Eugene
Trubowitz, An explicit solution of the inverse periodic problem for
Hill’s equation, SIAM J. Math. Anal. 18 (1987),
no. 1, 46–53. MR 871819
(88d:34037), http://dx.doi.org/10.1137/0518003
 15.
F.
Gesztesy, H.
Holden, B.
Simon, and Z.
Zhao, Trace formulae and inverse spectral
theory for Schrödinger operators, Bull.
Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 250–255. MR 1215308
(94c:34127), http://dx.doi.org/10.1090/S027309791993004312
 16.
F.
Gesztesy and R.
Weikard, Floquet theory revisited, Differential equations and
mathematical physics (Birmingham, AL, 1994), Int. Press, Boston, MA, 1995,
pp. 67–84. MR 1703573
(2000i:34163)
 17.
G.
M. L. Gladwell, Inverse problems in vibration, Monographs and
Textbooks on Mechanics of Solids and Fluids: Mechanics. Dynamical Systems,
vol. 9, Martinus Nijhoff Publishers, Dordrecht, 1986. MR 874749
(88b:73002)
 18.
Russell
A. Johnson, 𝑚functions and Floquet exponents for linear
differential systems, Ann. Mat. Pura Appl. (4) 147
(1987), 211–248 (English, with Italian summary). MR 916710
(88m:34021), http://dx.doi.org/10.1007/BF01762419
 19.
R.
Johnson and J.
Moser, The rotation number for almost periodic potentials,
Comm. Math. Phys. 84 (1982), no. 3, 403–438. MR 667409
(83h:34018)
 20.
W.
Kohn, Analytic properties of Bloch waves and Wannier
functions, Phys. Rev. (2) 115 (1959), 809–821.
MR
0108284 (21 #7000)
 21.
Peter
Kuchment, Floquet theory for partial differential equations,
Operator Theory: Advances and Applications, vol. 60, Birkhäuser
Verlag, Basel, 1993. MR 1232660
(94h:35002)
 22.
Wilhelm
Magnus and Stanley
Winkler, Hill’s equation, Dover Publications Inc., New
York, 1979. Corrected reprint of the 1966 edition. MR 559928
(80k:34001)
 23.
M.
M. Malamud, Necessary conditions for the existence of a
transformation operator for higherorder equations, Funktsional. Anal.
i Prilozhen. 16 (1982), no. 3, 74–75 (Russian).
MR 674021
(84i:34011)
 24.
H.
P. McKean and E.
Trubowitz, Hill’s operator and hyperelliptic function theory
in the presence of infinitely many branch points, Comm. Pure Appl.
Math. 29 (1976), no. 2, 143–226. MR 0427731
(55 #761)
 25.
H.
P. McKean and P.
van Moerbeke, The spectrum of Hill’s equation, Invent.
Math. 30 (1975), no. 3, 217–274. MR 0397076
(53 #936)
 26.
Fadil
Santosa, Yih
Hsing Pao, William
W. Symes, and Charles
Holland (eds.), Inverse problems of acoustic and elastic
waves, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1984. Papers from the international conference held at
Cornell University, Ithaca, N.Y., June 4–6, 1984. MR 804613
(86e:00016)
 27.
Joyce
R. McLaughlin, Analytical methods for recovering coefficients in
differential equations from spectral data, SIAM Rev.
28 (1986), no. 1, 53–72. MR 828436
(87d:34034), http://dx.doi.org/10.1137/1028003
 28.
Robert
E. Miller, The eigenvalue problem for a class of long, thin elastic
structures with periodic geometry, Quart. Appl. Math.
52 (1994), no. 2, 261–282. MR 1276237
(95c:73008)
 29.
M.
A. Naimark, Linear differential operators. Part I: Elementary
theory of linear differential operators, Frederick Ungar Publishing
Co., New York, 1967. MR 0216050
(35 #6885)
M.
A. Naĭmark, Linear differential operators. Part II: Linear
differential operators in Hilbert space, With additional material by
the author, and a supplement by V. È. Ljance. Translated from the
Russian by E. R. Dawson. English translation edited by W. N. Everitt,
Frederick Ungar Publishing Co., New York, 1968. MR 0262880
(41 #7485)
 30.
S. P. NOVIKOV, private communication (April 2001).
 31.
Vassilis
G. Papanicolaou, The spectral theory of the vibrating periodic
beam, Comm. Math. Phys. 170 (1995), no. 2,
359–373. MR 1334400
(96d:34108)
 32.
Vassilis
G. Papanicolaou and Dimitrios
Kravvaritis, An inverse spectral problem for the EulerBernoulli
equation for the vibrating beam, Inverse Problems 13
(1997), no. 4, 1083–1092. MR 1463595
(98f:34016), http://dx.doi.org/10.1088/02665611/13/4/013
 33.
Vassilis
G. Papanicolaou and Dimitrios
Kravvaritis, The Floquet theory of the periodic EulerBernoulli
equation, J. Differential Equations 150 (1998),
no. 1, 24–41. MR 1660270
(2000a:34167), http://dx.doi.org/10.1006/jdeq.1998.3474
 34.
Michael
Reed and Barry
Simon, Methods of modern mathematical physics. IV. Analysis of
operators, Academic Press [Harcourt Brace Jovanovich Publishers], New
York, 1978. MR
0493421 (58 #12429c)
 35.
L.
A. Sahnovič, Inverse problem for differential operators of
order 𝑛>2 with analytic coefficients, Mat. Sb. N.S.
46(88) (1958), 61–76 (Russian). MR 0099473
(20 #5912)
 36.
S. TIMOSHENKO AND D. H. YOUNG, ``Elements of Strength of Materials'', 5th Edition, D. Van Nostrand Company, Inc., Princeton, NJ, 1968.
 37.
E. C. TITCHMARSH, ``The Theory of Functions'', Second Edition, Oxford University Press, 1939.
 38.
E.
Trubowitz, The inverse problem for periodic potentials, Comm.
Pure Appl. Math. 30 (1977), no. 3, 321–337. MR 0430403
(55 #3408)
 39.
S. VENAKIDES, private communication.
 1.
 J. E. AVRON AND B. SIMON, Analytic Properties of Band Functions, Annals of Physics, 110 (1978), 85101. MR 57:14992
 2.
 A. BADANIN AND E. KOROTYAEV, Quasimomentum of Fourth Order Periodic Operator, preprint, 2001.
 3.
 V. BARCILON, Inverse Problem for a Vibrating Beam in the FreeClamped Configuration, Philosophical Transactions of the Royal Society of London, Series A, 304 (1982), 211251.
 4.
 R. BEALS AND R. R. COIFMAN, Scattering and Inverse Scattering for First Order Systems, Comm. Pure Appl. Math. 37, no. 1 (1984), 3990. MR 85f:34020
 5.
 R. BEALS, P. DEIFT, AND C. TOMEI, Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, 28. American Mathematical Society, Providence, RI, 1988, xiv + 209 pp. MR 90a:58064
 6.
 R. CARLSON, Compactness of Floquet Isospectral Sets for the Matrix Hill's Equation, Proceedings of the American Mathematical Society 128, no. 10 (2000), 29332941. MR 2000m:34027
 7.
 R. CARLSON, Eigenvalue Estimates and Trace Formulas for the Matrix Hill's Equation, Journal of Differential Equations 167, no. 1 (2000), 211244. MR 2001e:34157
 8.
 L. F. CAUDILL, P. A. PERRY, AND A. W. SCHUELLER, Isospectral Sets for FourthOrder Ordinary Differential Operators, SIAM J. Math. Anal. 29 (1998), 935966. MR 99c:34022
 9.
 E. A. CODDINGTON AND N. LEVINSON, ``Theory of Ordinary Differential Equations'', Robert E. Krieger Publishing Company, Malabar, Florida, 1987. MR 16:1022b
 10.
 W. CRAIG, The Trace Formula for Schrödinger Operators on the Line, Commun. Math. Phys. 126 (1989), 379407. MR 90m:47063
 11.
 B. A. DUBROVIN, I. M. KRICHEVER, AND S. P. NOVIKOV, Integrable Systems. I, Dynamical Systems, IV, 177332, Encyclopaedia of Mathematical Sciences, 4, SpringerVerlag, Berlin, 2001. MR 87k:58112
 12.
 B. A. DUBROVIN, V. MATVEEV, AND S. P. NOVIKOV, Nonlinear Equations of KortewegdeVries Type, Finite Zone Linear Operators, and Abelian Varieties, Uspekhi. Mat. Nauk, 31 (1976), 55136; Russian Math. Surveys, 31 (1976), 59146. MR 55:899
 13.
 N. DUNFORD AND J. T. SCHWARTZ, ``Linear Operators. Part II: Spectral Theory; Self Adjoint Operators in Hilbert Space'', Wiley Classics Library Edition, New York, 1988. MR 90g:47001b
 14.
 A FINKEL, E. ISAACSON, AND E. TRUBOWITZ, An Explicit Solution of the Inverse Periodic Problem Hill's Equation, SIAM J. Math. Anal. 18, No. 1 (Jan. 1987), 4653. MR 88d:34037
 15.
 F. GESZTESY, H. HOLDEN, B. SIMON, AND Z. ZHAO, Trace Formulae and Inverse Spectral Theory for Schrödinger Operators, Bull. Amer. Math. Soc. (New Series) 29 (1993), 250255. MR 94c:34127
 16.
 F. GESZTESY AND R. WEIKARD, Floquet Theory Revisited, in ``Differential Equations and Mathematical Physics'', Proceedings of the International Conference, Univ. of Alabama at Birmingham, March 1317, 1994, International Press, 1995. MR 2000i:34163
 17.
 G. M. L. GLADWELL, ``Inverse Problems in Vibration,'' Martinus Nijhoff Publishers, Boston, 1986. MR 88b:73002
 18.
 R. JOHNSON, Functions and Floquet Exponents for Linear Differential Systems, Annali di Mathematica pura ed applicata (IV), CXLVII (1987), 211248. MR 88m:34021
 19.
 R. JOHNSON AND J. MOSER, The Rotation Number for Almost Periodic Potentials, Comm. Math. Phys. 84 (1982), 403438; erratum: Comm. Math. Phys. 90 (1983), 317318. MR 83h:34018
 20.
 W. KOHN, Analytic Properties of Bloch Waves and Wannier Functions, Annals of Physical Review, 115, no. 4 (August 1959), 809821. MR 21:7000
 21.
 P. KUCHMENT,``Floquet Theory for Partial Differential Equations'', BirkhäuserVerlag, Basel, 1993. MR 94h:35002
 22.
 W. MAGNUS AND S. WINKLER, ``Hill's Equation'', Dover Publications, Inc., New York, 1979. MR 80k:34001
 23.
 M. M. MALAMUD, Necessary Conditions for the Existence of a Transformation Operator for Higher Order Equations, Funksional. Anal. i Ego Philozhen. 16 (1982), 7475. Functional Anal. Appl. 16 (1982), 219221. MR 84i:34011
 24.
 H. P. MCKEAN AND E. TRUBOWITZ, Hill's Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points, Comm. Pure Appl. Math. 29, no. 2 (1976), 143226. MR 55:761
 25.
 H. P. MCKEAN AND P. VAN MOERBEKE, The Spectrum of Hill's Equation, Invent. Math. 30, no. 3 (1975), 217274. MR 53:936
 26.
 J. R. MCLAUGHLIN, On Constructing Solutions to an Inverse EulerBernoulli Problem, in ``Inverse Problems of Acoustic and Elastic Waves'', pp. 341347, F. Santosa, et al. (editors), Philadelphia: SIAM, 1984. MR 86e:00016
 27.
 J. R. MCLAUGHLIN, Analytical Methods for Recovering Coefficients in Differential Equations from Spectral Data, SIAM Review 28 (1986), 5372. MR 87d:34034
 28.
 R. E. MILLER, The Eigenvalue Problem for a Class of Long, Thin Elastic Structures with Periodic Geometry, Quarterly of Applied Mathematics, LII, No. 2 (June 1994), 261282. MR 95c:73008
 29.
 M. A. NAIMARK, ``Linear Differential Operators'', Parts I & II, Frederick Ungar Publishing Co., New York, 1967 & 1968. MR 35:6885, MR 41:7485
 30.
 S. P. NOVIKOV, private communication (April 2001).
 31.
 V. G. PAPANICOLAOU, The Spectral Theory of the Vibrating Periodic Beam, Comm. Math. Phys. 170 (1995), 359373. MR 96d:34108
 32.
 V. G. PAPANICOLAOU AND D. KRAVVARITIS, An Inverse Spectral Problem for the EulerBernoulli Equation for the Vibrating Beam, Inverse Problems 13 (1997), 10831092. MR 98f:34016
 33.
 V. G. PAPANICOLAOU AND D. KRAVVARITIS, The Floquet Theory of the Periodic EulerBernoulli Equation, Journal of Differential Equations 150 (1998), 2441. MR 2000a:34167
 34.
 M. REED AND B. SIMON, ``Methods of Modern Mathematical Physics, VI: Analysis of Operators'', Academic Press, New York, 1978. MR 58:12429c
 35.
 L. A. SACHNOVICH, Inverse Problems for Differential Equations of Order with Analytic Coefficients, Matematicheskii Sbornik 46 (1958), 6176. MR 20:5912
 36.
 S. TIMOSHENKO AND D. H. YOUNG, ``Elements of Strength of Materials'', 5th Edition, D. Van Nostrand Company, Inc., Princeton, NJ, 1968.
 37.
 E. C. TITCHMARSH, ``The Theory of Functions'', Second Edition, Oxford University Press, 1939.
 38.
 E. TRUBOWITZ, The Inverse Problem for Periodic Potentials, Comm. Pure Appl. Math. 30, no. 3 (1977), 321337. MR 55:3408
 39.
 S. VENAKIDES, private communication.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
34B05,
34B10,
34B30,
34L40,
74B05
Retrieve articles in all journals
with MSC (2000):
34B05,
34B10,
34B30,
34L40,
74B05
Additional Information
Vassilis G. Papanicolaou
Affiliation:
Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 672600033
Address at time of publication:
Department of Mathematics, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
Email:
papanico@math.ntua.gr
DOI:
http://dx.doi.org/10.1090/S0002994703033154
PII:
S 00029947(03)033154
Keywords:
EulerBernoulli equation for the vibrating beam,
beam operator,
Hill operator,
Floquet spectrum,
pseudospectrum,
algebraic/geometric multiplicity,
multipoint eigenvalue problem
Received by editor(s):
November 13, 2001
Received by editor(s) in revised form:
November 10, 2002
Published electronically:
May 29, 2003
Article copyright:
© Copyright 2003 American Mathematical Society
