Sub-bundles of the complexified tangent bundle
Authors:
Howard Jacobowitz and Gerardo Mendoza
Journal:
Trans. Amer. Math. Soc. 355 (2003), 4201-4222
MSC (2000):
Primary 57R22, 58J10; Secondary 35F05, 35N10
DOI:
https://doi.org/10.1090/S0002-9947-03-03350-6
Published electronically:
June 10, 2003
MathSciNet review:
1990583
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study embeddings of complex vector bundles, especially line bundles, in the complexification of the tangent bundle of a manifold. The aim is to understand implications of properties of interest in partial differential equations.
- 1. Andreotti, A. and Hill, C. D., Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. 26 (1972), 299-324. MR 57:717
- 2. Baouendi, M. S., Chang, C. H., and Treves, F., Microlocal hypoanalyticity and extension of CR functions, J. Differential Geom. 18 (1983), 331-391. MR 85h:32030
- 3. Bott, R., On a topological obstruction to integrability, in: Global Analysis, Proc. Sympos. Pure Math. 16, Amer. Math. Soc. (1970), 127-131. MR 42:1155
- 4. Bott, R. and Tu, L. W., Differential forms in algebraic topology, Springer-Verlag, Berlin, Heidelberg, New York, 1982. MR 83i:57016
- 5. Brunella, M. On transversely holomorphic flows. I, Invent. Math. 126 (1996), 265-279. MR 97j:58121
- 6.
Cadek, M. and Vanzura, J., On complex structures in
-dimensional vector bundles, Manuscripta Math. 95 (1998), 323-330. MR 98m:57034
- 7.
-, On
-distributions in
-dimensional vector bundles over
-complexes, Colloq. Math. 70 (1996), 25-40. MR 96k:57021
- 8. Chern, S. S., An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771-782. MR 17:657g
- 9. Ghys, É., On transversely holomorphic flows. II, Invent. Math. 126 (1996), 281-286. MR 97j:58122
- 10. Heaps, T., Almost complex structures on eight and ten-dimensional manifolds, Topology 9 (1970), 111-119. MR 41:9283
- 11.
Hirzebruch, F. and Hopf, H., Felder von Flächenelementen in
-dimensionalen Mannigfeltigkeiten, Math. Ann. 136 (1958), 156-172. MR 20:7272
- 12. Hsiung, C., Almost complex structures and complex structures, Series in Pure Mathematics, Vol. 20, World Scientific Publishing Co., Singapore, 1995. MR 96j:53033
- 13. Husemoller, D., Fibre Bundles, third edition, Springer-Verlag, Berlin, Heidelberg, New York, 1993. MR 94k:55001
- 14. Jacobowitz, H., Global Mizohata Structures, J. Geom. Anal. 3 (1993), 153-193. MR 94c:58190
- 15. -, Transversely holomorphic foliations and CR structures, VI Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1999), Mat. Contemp. 18 (2000), 175-194. MR 2002f:32061
- 16. Kervaire, M., A note on obstructions and characteristic classes, Amer. J. Math. 81 (1959), 773-784. MR 21:6585
- 17. MacPherson, R., Singularities of vector bundle maps, Proceedings of Liverpool Singularities Symposium, I (1969/70), pp. 316-318. Lecture Notes in Math., Vol. 192, Springer-Verlag, Berlin, 1971. MR 43:4055
- 18. -, Generic vector bundle maps. Dynamical Systems, Proc. Sympos., Univ. Bahia, Salvador, 1971, pp. 165-175, Academic Press, New York, 1973. MR 49:3962
- 19. Mello, M. H. de P. L., Two-plane sub-bundles of nonorientable real vector-bundles, Manuscripta Math. 57 (1987), 263-280. MR 88c:55020
- 20. Massey, W. S. On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92-102. MR 22:1918
- 21. Mendoza, G. A., Elliptic structures, Multidimensional complex analysis and partial differential equations (São Carlos, 1995), Contemp. Math. 205 (1997), 219-234. MR 98c:32041
- 22. Milnor, J. and Stasheff, J., Characteristic Classes, Princeton University Press, 1974. MR 55:13428
- 23. Peterson, F., Some remarks on Chern classes, Ann. Math. 69 (1959), 414-420. MR 21:1593
- 24. Shulman, H., Secondary obstructions to foliations, Topology 13 (1974), 177-183. MR 49:9855
- 25. Steenrod, N., Topology of fiber bundles, Princeton University Press, 1951 (ninth printing, 1974). MR 12:522b
- 26.
Thomas, E., Fields of tangent
-planes on even dimensional manifolds, Ann. Math. (2) 86 (1967), 349-361. MR 35:3699
- 27.
-, Fields of tangent
-planes on manifolds, Invent. Math. 3 (1967), 334-347. MR 36:903
- 28. -, Complex Structures on Real Vector Bundles, Amer J. Math. 89 (1967), 887-908. MR 36:3375
- 29. -, Secondary obstructions to integrability. Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 655-661, Academic Press, New York, 1973. MR 49:8035
- 30. Treves, F., Hypo-analytic Structures: Local Theory, Princeton University Press, 1992. MR 94e:35014
- 31.
Turaev, V., Torsion invariants of
-structures on 3-manifolds, Math. Res. Lett. 4 (1997), 679-695. MR 98k:57038
- 32.
Wood, J. W., Foliations on
-manifolds, Ann. Math. (2) 89 (1969), 336-358. MR 40:2123
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R22, 58J10, 35F05, 35N10
Retrieve articles in all journals with MSC (2000): 57R22, 58J10, 35F05, 35N10
Additional Information
Howard Jacobowitz
Affiliation:
Department of Mathematics, Rutgers University, Camden, New Jersey 08102
Email:
jacobowi@camden.rutgers.edu
Gerardo Mendoza
Affiliation:
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Email:
gmendoza@math.temple.edu
DOI:
https://doi.org/10.1090/S0002-9947-03-03350-6
Keywords:
Complexified tangent bundle,
hypo-complex vector fields,
Chern class,
CR structure,
characteristic points
Received by editor(s):
September 18, 2002
Received by editor(s) in revised form:
February 27, 2003
Published electronically:
June 10, 2003
Article copyright:
© Copyright 2003
American Mathematical Society