Codimension growth and minimal superalgebras

Authors:
A. Giambruno and M. Zaicev

Journal:
Trans. Amer. Math. Soc. **355** (2003), 5091-5117

MSC (2000):
Primary 16R10; Secondary 16P90

DOI:
https://doi.org/10.1090/S0002-9947-03-03360-9

Published electronically:
July 24, 2003

MathSciNet review:
1997596

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A celebrated theorem of Kemer (1978) states that any algebra satisfying a polynomial identity over a field of characteristic zero is PI-equivalent to the Grassmann envelope of a finite dimensional superalgebra . In this paper, by exploiting the basic properties of the exponent of a PI-algebra proved by Giambruno and Zaicev (1999), we define and classify the minimal superalgebras of a given exponent over a field of characteristic zero. In particular we prove that these algebras can be realized as block-triangular matrix algebras over the base field.

The importance of such algebras is readily proved: is a minimal superalgebra if and only if the ideal of identities of is a product of verbally prime T-ideals. Also, such superalgebras allow us to classify all minimal varieties of a given exponent i.e., varieties such that and for all proper subvarieties of . This proves in the positive a conjecture of Drensky (1988). As a corollary we obtain that there is only a finite number of minimal varieties for any given exponent. A classification of minimal varieties of finite basic rank was proved by the authors (2003).

As an application we give an effective way for computing the exponent of a T-ideal given by generators and we discuss the problem of what functions can appear as growth functions of varieties of algebras.

**1.**A. Regev and S. A. Amitsur,*PI-algebras and their cocharacters*, J. Algebra**78**(1982), no. 1, 248–254. MR**677720**, https://doi.org/10.1016/0021-8693(82)90110-7**2.**Allan Berele,*Cocharacters of 𝑍/2𝑍-graded algebras*, Israel J. Math.**61**(1988), no. 3, 225–234. MR**941239**, https://doi.org/10.1007/BF02772569**3.**Allan Berele and Amitai Regev,*On the codimensions of the verbally prime P.I. algebras*, Israel J. Math.**91**(1995), no. 1-3, 239–247. MR**1348314**, https://doi.org/10.1007/BF02761648**4.**A. Berele and A. Regev,*Codimensions of products and of intersections of verbally prime 𝑇-ideals*, Israel J. Math.**103**(1998), 17–28. MR**1613536**, https://doi.org/10.1007/BF02762265**5.**Allan Berele and Amitai Regev,*Exponential growth for codimensions of some p.i. algebras*, J. Algebra**241**(2001), no. 1, 118–145. MR**1838847**, https://doi.org/10.1006/jabr.2000.8672**6.**George M. Bergman and Jacques Lewin,*The semigroup of ideals of a fir is (usually) free*, J. London Math. Soc. (2)**11**(1975), no. 1, 21–31. MR**0379554**, https://doi.org/10.1112/jlms/s2-11.1.21**7.**Veselin S. Drenski,*Extremal varieties of algebras. I*, Serdica**13**(1987), no. 4, 320–332 (Russian). MR**929452****8.**Veselin S. Drenski,*Extremal varieties of algebras. II*, Serdica**14**(1988), no. 1, 20–27 (Russian). MR**944480****9.**Vesselin Drensky,*Gelfand-Kirillov dimension of PI-algebras*, Methods in ring theory (Levico Terme, 1997) Lecture Notes in Pure and Appl. Math., vol. 198, Dekker, New York, 1998, pp. 97–113. MR**1767973****10.**Vesselin Drensky and Amitai Regev,*Exact asymptotic behaviour of the codimensions of some P.I. algebras*. part A, Israel J. Math.**96**(1996), no. part A, 231–242. MR**1432733**, https://doi.org/10.1007/BF02785540**11.**A. Giambruno and M. Zaicev,*On codimension growth of finitely generated associative algebras*, Adv. Math.**140**(1998), no. 2, 145–155. MR**1658530**, https://doi.org/10.1006/aima.1998.1766**12.**A. Giambruno and M. Zaicev,*Exponential codimension growth of PI algebras: an exact estimate*, Adv. Math.**142**(1999), no. 2, 221–243. MR**1680198**, https://doi.org/10.1006/aima.1998.1790**13.**A. Giambruno and M. Zaicev,*Minimal varieties of algebras of exponential growth*, Electron. Res. Announc. Amer. Math. Soc.**6**(2000), 40–44. MR**1767635**, https://doi.org/10.1090/S1079-6762-00-00078-0**14.**A. Giambruno and M. Zaicev,*Minimal varieties of exponential growth.*Adv. Math.**174**(2003), 310-323.**15.**A. Giambruno and M.V. Zaicev,*Minimal varieties of given codimension growth.*Vestnik Moskov. Univ. Ser I Mat. Mekh. (2003), No. 1, 20-22.**16.**A. Giambruno and M. Zaicev,*A characterization of varieties of associative algebras of exponent two*, Serdica Math. J.**26**(2000), no. 3, 245–252. MR**1803836****17.**M. Gromov,*Asymptotic invariants of infinite groups*, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR**1253544****18.**Amitai Regev and Alexander Guterman,*On the growth of identities*, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 319–330. MR**1754678****19.**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****20.**A. R. Kemer,*The Spechtian nature of 𝑇-ideals whose condimensions have power growth*, Sibirsk. Mat. Ž.**19**(1978), no. 1, 54–69, 237 (Russian). MR**0466190****21.**Aleksandr Robertovich Kemer,*Ideals of identities of associative algebras*, Translations of Mathematical Monographs, vol. 87, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by C. W. Kohls. MR**1108620****22.**Günter R. Krause and Thomas H. Lenagan,*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834****23.**V. N. Latyšev,*On Regev’s theorem on identities in a tensor product of 𝑃𝐼-algebras*, Uspehi Mat. Nauk**27**(1972), no. 4(166), 213–214 (Russian). MR**0393114****24.**Jacques Lewin,*A matrix representation for associative algebras. I, II*, Trans. Amer. Math. Soc.**188**(1974), 293–308; ibid. 188 (1974), 309–317. MR**0338081**, https://doi.org/10.1090/S0002-9947-1974-0338081-5**25.**A. Yu. Ol′shanskiĭ,*On the distortion of subgroups of finitely presented groups*, Mat. Sb.**188**(1997), no. 11, 51–98 (Russian, with Russian summary); English transl., Sb. Math.**188**(1997), no. 11, 1617–1664. MR**1601512**, https://doi.org/10.1070/SM1997v188n11ABEH000276**26.**Amitai Regev,*Existence of identities in 𝐴⊗𝐵*, Israel J. Math.**11**(1972), 131–152. MR**0314893**, https://doi.org/10.1007/BF02762615**27.**Amitai Regev,*Codimensions and trace codimensions of matrices are asymptotically equal*, Israel J. Math.**47**(1984), no. 2-3, 246–250. MR**738172**, https://doi.org/10.1007/BF02760520**28.**Amitai Regev,*Asymptotics of codimensions of some P.I. algebras*, Trends in ring theory (Miskolc, 1996) CMS Conf. Proc., vol. 22, Amer. Math. Soc., Providence, RI, 1998, pp. 159–172. MR**1491923****29.**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061****30.**A. N. Stoyanova-Venkova,*Some lattices of varieties of associative algebras defined by identities of the fifth degree*, C. R. Acad. Bulgare Sci.**35**(1982), no. 7, 867–868 (Russian). MR**681740****31.**E. J. Taft,*Invariant Wedderburn factors*, Illinois J. Math.**1**(1957), 565–573. MR**0098124**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16R10,
16P90

Retrieve articles in all journals with MSC (2000): 16R10, 16P90

Additional Information

**A. Giambruno**

Affiliation:
Dipartimento di Matematica ed Applicazioni, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy

Email:
agiambr@unipa.it

**M. Zaicev**

Affiliation:
Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, 119992 Russia

Email:
zaicev@mech.math.msu.su

DOI:
https://doi.org/10.1090/S0002-9947-03-03360-9

Keywords:
Polynomial identity,
T-ideal,
superalgebra,
variety,
growth

Received by editor(s):
June 12, 2002

Received by editor(s) in revised form:
March 20, 2003

Published electronically:
July 24, 2003

Additional Notes:
The first author was supported in part by MIUR of Italy.

The second author was partially supported by RFBR, grants 02-01-00219 and 00-15-96128.

Article copyright:
© Copyright 2003
American Mathematical Society