Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compact covering mappings between Borel sets and the size of constructible reals


Authors: Gabriel Debs and Jean Saint Raymond
Journal: Trans. Amer. Math. Soc. 356 (2004), 73-117
MSC (2000): Primary 03E15; Secondary 03E45, 54H05
DOI: https://doi.org/10.1090/S0002-9947-03-03206-9
Published electronically: August 25, 2003
MathSciNet review: 2020025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the topological statement: ``Any compact covering mapping between two Borel sets is inductively perfect" is equivalent to the set-theoretical statement: $\lq\lq \,\forall\alpha\in \omega^\omega,\; \aleph_1^{L(\alpha)}<\aleph_1$".


References [Enhancements On Off] (What's this?)

  • 1. J.P.R. Christensen, Necessary and sufficient conditions for the measurability of certain sets of closed sets, Math. Annaluen 200 (1973), 189-193MR 48:12488
  • 2. G. Debs and J. Saint Raymond, Compact covering mappings and game determinacy, Topology Appl. 68 (1996), 153-185 MR 96m:54067
  • 3. G. Debs and J. Saint Raymond, Cofinal $\boldsymbol{\Sigma}^1_1$and $\boldsymbol{\Pi}^1_1$subsets of $\omega^\omega$, Fund. Math. 159 (1999), 161-193 MR 2001g:03087
  • 4. G. Debs and J. Saint Raymond, Compact covering mappings and cofinal families of compact subsets of a Borel set, Fund. Math. 167 (2001), 213-249 MR 2001k:03098
  • 5. G. Debs and J. Saint Raymond, Applications semi-propres sur un espace borélien, C. R. Acad. Sci. Paris t. 232, Série I, (2001), 423-426 MR 2002a:28002
  • 6. W. Just and H. Wicke, Some conditions under which tri-quotient or compact-covering maps are inductively perfect, Topology Appl. 55 (1994), 289-305 MR 95a:54051
  • 7. Y.N. Moschovakis, Desriptive Set Theory (North Holland, Amsterdam, 1980) MR 82e:03002
  • 8. A.V. Ostrovsky, On new classes of mappings associated with compact-covering mappings, Vestnik Moskov. Univ. Ser. I Mat. Mekh.1994, no. 4, 24-28; English transl., Moscow Univ. Math. Bull. 49 (1994), no. 4, 20-23. MR 96a:54013
  • 9. J. Saint Raymond, Caractérisation d'espaces polonais, Séminaire d'Initiation à l'Analyse 11-12èmes années, no. 5 (1971-73)MR 57:12811

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 03E15, 03E45, 54H05

Retrieve articles in all journals with MSC (2000): 03E15, 03E45, 54H05


Additional Information

Gabriel Debs
Affiliation: Analyse Fonctionnelle, Institut de Mathématique de Jussieu, Boîte 186, 4, place Jussieu, 75252 Paris Cedex 05, France
Email: gad@ccr.jussieu.fr

Jean Saint Raymond
Affiliation: Analyse Fonctionnelle, Institut de Mathématique de Jussieu, Boîte 186, 4, place Jussieu, 75252 Paris Cedex 05, France
Email: jsr@ccr.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-03-03206-9
Received by editor(s): May 31, 2001
Published electronically: August 25, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society