Backward stability for polynomial maps with locally connected Julia sets

Authors:
Alexander Blokh and Lex Oversteegen

Journal:
Trans. Amer. Math. Soc. **356** (2004), 119-133

MSC (2000):
Primary 37F10; Secondary 37E25

DOI:
https://doi.org/10.1090/S0002-9947-03-03415-9

Published electronically:
August 25, 2003

MathSciNet review:
2020026

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study topological dynamics on *unshielded* planar continua with weak expanding properties at cycles for which we prove that the absence of wandering continua implies backward stability. Then we deduce from this that a polynomial with a locally connected Julia set is backward stable outside any neighborhood of its attracting and neutral cycles. For a conformal measure this easily implies that one of the following holds: 1. for -a.e. , ; 2. for -a.e. , for a critical point depending on .

**[Bar]**J. A. Barnes,*Conservative exact rational maps of the sphere*, Journal of Math. Analysis and Appl.**230**(1999), pp. 350-374. MR**2000d:37048**18pt**[B]**A. Blokh,*The ``spectral'' decomposition for one-dimensional maps*, Dynamics Reported**4**(1995), pp. 1-59. MR**96e:58087****[BL1]**A. Blokh and G. Levin,*Growing trees, laminations and the dynamics on the Julia set*, IHES Preprint IHES/M/99/77 (1999), pp. 1-40.**[BL2]**A. Blokh and G. Levin,*On dynamics of vertices of locally connected polynomial Julia sets***130**(2002), pp. 3219-3230. MR**2003c:37066****[BL3]**A. Blokh, G. Levin,*An inequality for laminations, Julia sets and ``growing trees''*, Erg. Th. and Dyn. Sys.**22**(2002), pp. 63-97.**[BLyu]**A. Blokh and M. Lyubich,*Measurable dynamics of S-unimodal maps of the interval*, Ann. Sci. Ecole Norm. Sup. (4)**24**(1991), pp. 545-573. MR**93f:58132****[BMO1]**A. Blokh, J. Mayer and L. Oversteegen,*Recurrent critical points and typical limit sets of rational maps*, Proc. Amer. Math. Soc.**127**(1999), pp. 1215-1229. MR**99f:58169****[BMO2]**A. Blokh, J. Mayer, L. Oversteegen,*Recurrent critical points and typical limit sets for conformal measures*, Topology and its Appl.**108**(2000), pp. 233-244. MR**99f:58169****[BM]**A. Blokh, M. Misiurewicz,*Attractors for graph critical rational maps*, Trans. Amer. Math. Soc.**354**(2002), pp. 3639-3661.**[CG]**L. Carleson and T. W. Gamelin,*Complex dynamics*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, NY (1993). MR**94h:30033****[DMNUrb]**M. Denker, R. D. Mauldin, N. Nitecki, and M. Urbanski,*Conformal measures for rational functions revisited*, Fund. Math.**157**(1998), pp. 161-173. MR**99j:58122****[DU91]**M. Denker and M. Urbanski,*On the existence of conformal measures*, Trans. Amer. Math. Soc.**328**(1991), pp. 563-587. MR**92k:58155****[Do]**A. Douady,*Descriptions of compact sets in*, in: Topological methods in modern mathematics, Publish or Perish, Houston, TX (1993), pp. 429-465. MR**94g:58185****[GPS]**P. Grzegorczyk, F. Przytycki, and W. Szlenk,*On iterations of Misiurewicz's rational maps on the Riemann sphere*, Annales de l'Inst. H. Poincaré**53**(1990), pp. 431-444. MR**92d:30017****[Kurat]**K. Kuratowski,*Topology*, vol. 2, Academic Press, New York (1968). MR**41:4467****[L]**G. Levin,*On backward stability of holomorphic dynamical systems*, Fundamenta Mathematicae**158**(1998), pp. 97-107. MR**99j:58171****[Lyu]**M. Yu. Lyubich,*Typical behavior of trajectories of the rational mappings of a sphere*, Soviet Math. Dokl.**27:1**(1983), pp. 22-25, originally published in Dokl. Akad. Nauk SSSR**268:1**(1983), pp. 29-32. MR**84f:30036****[Ma]**R. Mañé,*On a theorem of Fatou*, Bol. Soc. Bras. Mat.**24**(1993), pp. 1-11. MR**94g:58188****[McM]**C. T. McMullen,*Complex dynamics and renormalization*, Annals of Mathematical Studies, no. 135, Princeton Univ. Press, Princeton, NJ (1994). MR**96b:58097****[Mi]**J. Milnor,*On the concept of attractor*, Comm. Math. Phys.**99**(1985), pp. 177-195 (Correction and remarks: vol.**102**(1985), pp. 517-519). MR**87i:58109a****[Pra]**E. Prado,*Ergodicity of conformal measures for unimodal polynomials*, Tech. Report 6, SUNY-Stony Brook, 1996, Institute for Mathematical Sciences.**[P]**F. Przytycki,*Conical limit set and Poincaré exponent for iterations of rational functions*, Trans. Amer. Math. Soc.**351**(1999), pp. 2081-2099. MR**99h:58110****[Sul]**D. Sullivan,*Conformal dynamical systems*, in: Geometric Dynamics, Lecture Notes in Mathematics,**1007**, Springer-Verlag, Berlin (1983) pp. 725-752. MR**85m:58112****[Th]**W. Thurston,*The combinatorics of iterated rational maps*, Preprint (1985).**[Why42]**G. T. Whyburn,*Analytic topology*,**28**, AMS Coll. Publications, Providence, RI (1942). MR**4:86b**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37F10,
37E25

Retrieve articles in all journals with MSC (2000): 37F10, 37E25

Additional Information

**Alexander Blokh**

Affiliation:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170

Email:
ablokh@math.uab.edu

**Lex Oversteegen**

Affiliation:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170

Email:
overstee@math.uab.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03415-9

Keywords:
Complex dynamics,
locally connected,
Julia set,
backward stability,
conformal measure

Received by editor(s):
October 10, 2001

Published electronically:
August 25, 2003

Additional Notes:
The first author was partially supported by NSF Grant DMS-9970363 and the second author by NSF grant DMS-0072626

Article copyright:
© Copyright 2003
American Mathematical Society