Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Examples of pleating varieties for twice punctured tori


Authors: Raquel Díaz and Caroline Series
Journal: Trans. Amer. Math. Soc. 356 (2004), 621-658
MSC (2000): Primary 30F40, 20H10, 32G15
DOI: https://doi.org/10.1090/S0002-9947-03-03179-9
Published electronically: September 22, 2003
MathSciNet review: 2022714
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an explicit description of some pleating varieties (sets with a fixed set of bending lines in the convex hull boundary) in the quasi-Fuchsian space of the twice punctured torus. In accordance with a conjecture of the second author, we show that their closures intersect Fuchsian space in the simplices of minima introduced by Kerckhoff. All computations are done using complex Fenchel-Nielsen coordinates for quasi-Fuchsian space referred to a maximal system of curves.


References [Enhancements On Off] (What's this?)

  • 1. F. Bonahon and J-P. Otal.
    Laminations mesurées de plissage des variétés hyperboliques de dimension 3,
    preprint, 2001.
  • 2. R. D. Canary, D. B. A. Epstein and P. Green.
    Notes on notes of Thurston.
    In D. B. A. Epstein, editor, ``Analytical and Geometric Aspects of Hyperbolic Space", LMS Lecture Notes 111, 3-92. Cambridge University Press, 1987. MR 89e:57008
  • 3. R. Díaz and C. Series.
    Limits of lines of minima in Thurston's boundary of Teichmüller space, Algebraic and Geometric Topology 3, 207-234, 2003.
  • 4. D. B. A. Epstein and A. Marden.
    Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces.
    In D. B. A. Epstein, editor, ``Analytical and Geometric Aspects of Hyperbolic Space", LMS Lecture Notes 111, 112-253. Cambridge University Press, 1987. MR 89c:52014
  • 5. A. Fahti, P. Laudenbach, and V. Poénaru.
    Travaux de Thurston sur les surfaces, Astérisque 66-67.
    Société Mathématique de France, 1979. MR 82m:57003
  • 6. F. Gardiner and L. Keen.
    Holomorphic motions and quasi-Fuchsian manifolds,
    Contemp. Math. 240, 159-173, 1999. MR 2000k:30023
  • 7. P.A. Griffiths and J. Harris.
    Principles of Algebraic geometry.
    Wiley, 1978. MR 80b:14001
  • 8. R.D. Horowitz.
    Characters of free groups represented in the two dimensional special linear group,
    Comm. Pure Appl. Math. 25, 635-649, 1972. MR 47:3542
  • 9. L. Keen and C. Series.
    Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori,
    Topology 32, 719-749, 1993. MR 95g:32030
  • 10. L. Keen and C. Series.
    Continuity of convex hull boundaries,
    Pacific J. Math. 168(1), 183-206, 1995. MR 96d:30055
  • 11. L. Keen and C. Series.
    How to bend pairs of punctured tori.
    In J. Dodziuk and L. Keen, editors, ``Lipa's Legacy", Contemp. Math. 211, 359-388, 1997. MR 98m:30063
  • 12. L. Keen and C. Series.
    Pleating invariants for punctured torus groups,
    Topology, 2003.
  • 13. L. Keen and C. Series.
    The Riley slice of Schottky space,
    Proceedings of the London Mathematical Society 3, 72-90, 1994. MR 95j:32033
  • 14. S. Kerckhoff.
    The Nielsen realization problem,
    Ann. of Math. 117, 235-265, 1983. MR 85e:32029
  • 15. S. Kerckhoff.
    Lines of Minima in Teichmüller space,
    Duke Math J. 65, 187-213, 1992. MR 93b:32027
  • 16. Y. Komori and C. Series.
    Pleating coordinates for the Earle embedding,
    Ann. de la Fac. des Sciences de Toulouse, Vol. X, 69-105, 2001.
  • 17. C. Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41(1), 173-188, 1994. MR 96g:30079
  • 18. I. Kra.
    On lifting Kleinian groups to $SL(2,\mathbb C)$.
    In: ``Differential Geometry and Complex Analysis", I. Chavel and H. Farkas, editors, 181-193. Springer-Verlag, 1985. MR 86h:30078
  • 19. C. Series.
    Lectures on pleating coordinates for once punctured tori,
    In Hyperbolic Spaces and Related topics, RIMS Kokyuroku 1104, Kyoto, 30-108, 1999. MR 2000m:57019
  • 20. C. Series.
    On Kerckhoff Minima and Pleating Loci for quasi-Fuchsian Groups,
    Geometriae Dedicata 88, 211-237, 2001. MR 2002j:30066
  • 21. C. Series, Limits of quasifuchsian groups with small bending, preprint 2002. arXiv:mathGT/0209190
  • 22. S. P. Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, International J. Math. 5(2), 239-251, 1994. MR 94m:32030
  • 23. W. Thurston.
    Earthquakes in two-dimensional hyperbolic geometry.
    In D. B. A. Epstein, editor, ``Low-dimensional Topology and Kleinian Groups", LMS Lecture Notes 112, 91-112. Cambridge University Press, 1987. MR 88m:57015
  • 24. W. Thurston.
    Three-dimensional Geometry and Topology, Vol.1.
    Princeton U.P., 1997. MR 97m:57016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30F40, 20H10, 32G15

Retrieve articles in all journals with MSC (2000): 30F40, 20H10, 32G15


Additional Information

Raquel Díaz
Affiliation: Departamento de Geometría y Topología, Facultad Matemáticas, Universidad Complutense, 28040 Madrid, Spain
Email: radiaz@mat.ucm.es

Caroline Series
Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: cms@maths.warwick.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-03-03179-9
Received by editor(s): August 21, 2001
Received by editor(s) in revised form: July 11, 2002
Published electronically: September 22, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society