Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems

Authors: Donatella Donatelli and Pierangelo Marcati
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 2093-2121
MSC (2000): Primary 35L40, 35K40; Secondary 58J45, 58J37
Published electronically: January 6, 2004
MathSciNet review: 2031055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we investigate the diffusive zero-relaxation limit of the following multi-D semilinear hyperbolic system in pseudodifferential form:

\begin{displaymath}W_{t}(x,t) + \frac{1}{\varepsilon}A(x,D)W(x,t)= \frac{1}{\varepsilon ^2} B(x,W(x,t))+\frac{1}{\varepsilon} D(W(x,t))+E(W(x,t)).\end{displaymath}

We analyze the singular convergence, as $\varepsilon \downarrow 0$, in the case which leads to a limit system of parabolic type. The analysis is carried out by using the following steps:
We single out algebraic ``structure conditions'' on the full system, motivated by formal asymptotics, by some examples of discrete velocity models in kinetic theories.
We deduce ``energy estimates '', uniformly in $\varepsilon$, by assuming the existence of a symmetrizer having the so-called block structure and by assuming ``dissipativity conditions'' on $B$.
We assume a Kawashima type condition and perform the convergence analysis by using generalizations of compensated compactness due to Tartar and Gérard.
Finally, we include examples that show how to use our theory to approximate any quasilinear parabolic systems, satisfying the Petrowski parabolicity condition, or general reaction diffusion systems, including Chemotaxis and Brusselator type systems.

References [Enhancements On Off] (What's this?)

  • 1. F. Bouchut, F. Guarguaglini and R. Natalini, Diffusive BGK approximation for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J., 49 (2000), no. 2, 723-749. MR 2001k:35162
  • 2. J. Chazarain, A. Piriou, Introduction to the theory of linear partial differential equations. Studies in Mathematics and its Applications, 14 (1982), North-Holland Pub. MR 83j:35001
  • 3. G.-Q. Chen, C.D. Levermore , and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math., 47 (1994), no. 6, 787-830. MR 95h:35133
  • 4. B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functional.
    Springer-Verlag, 1982. MR 84f:49020
  • 5. C. Dafermos, Hyperbolic conservation laws in continuum physics. Grundlehren der mathematischen Wissenschaften 325 (2000), Springer-Verlag. MR 2001m:35212
  • 6. P. Degond, T. Goudon, F.Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000), no. 3, 1175-1198. MR 2002a:35012
  • 7. R.J. DiPerna, Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal., 82 (1983), no. 1, 27-70. MR 84k:35091
  • 8. R.J. DiPerna. Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc., 292 (1985), no.2, 383-420. MR 87g:35148
  • 9. D. Donatelli, P. Marcati, Relaxation of semilinear hyperbolic systems with variable coefficients. Ricerche di Matematica, 48 (1999), suppl., 295-310. MR 2001d:35129
  • 10. D. Donatelli, P. Marcati, $1-\mathcal{D}$ Relaxation from hyperbolic to parabolic systems with variable coefficients. Rendiconti dell' Istituto di Matematica dell'Università di Trieste, 31 (2000), suppl., 63-85. MR 2001j:35182
  • 11. S.D. Eidel'man, Parabolic Systems. North-Holland Publishing Company (1969). MR 40:6023
  • 12. L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference series in Mathematics of AMS, 74 (1990). MR 91a:35009
  • 13. P. Gérard, Microlocal defect measures. Comm. Partial Differential Equations, 16 (1991), no. 11, 1761-1794. MR 92k:35027
  • 14. F. Golse, L. St. Raymond, The Navier-Stokes limit of the Boltzmann equation: convergence proof. Preprint R01035, Laboratoire d'Analyse Numérique, Univ. Paris VI, 2001.
  • 15. L. Hörmander, The analysis of linear partial differential operators. Grundleheren der matematischen Wissenschaften, vols. I-IV, Springer-Verlag, 1983-1985. MR 85g:35002b
  • 16. S. Jin, H. L. Liu, Diffusion limit of a hyperbolic system with relaxation. Meth. and. Appl. Anal., 5, (1998), 317-334. MR 2000k:35176
  • 17. S. Jin, L. Pareschi, G. Toscani Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000), no. 3, 913-936. MR 2001h:65095
  • 18. M. Junk, W.A. Yong, Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation, Technical Report, IWR, Universität Heidelberg.
  • 19. M.A. Katsoulakis and A.E. Tzavaras, Contractive relaxation systems and interacting particles for scalar conservation laws. C. R. Acad. Sci. Paris S. I Math., 323 (1996), no. 8, 865-870. MR 97g:35104
  • 20. M.A Katsoulakis and A.E. Tzavaras, Contractive relaxation systems and the scalar multidimensional conservation law. Comm. Partial Differential Equations,22 (1997), no. 1-2, 195-233. MR 97m:35168
  • 21. M.A. Katsoulakis and A.E. Tzavaras, Multiscale analysis for interacting particles: relaxation systems and scalar conservation laws. J. Statist. Phys. 96 (1999), no. 3-4, 715-763. MR 2000j:82029
  • 22. S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburg Sect. A, 106 (1987), no. 1-2, 169-194. MR 89d:35022
  • 23. E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as instability. J. Theor. Biol. 1970, 399-415.
  • 24. H.-0. Kreiss, Initial-boundary Value Problems for Hyperbolic systems. Comm. on Pure and Applied Math., 23 (1970), 277-298. MR 55:10862
  • 25. H.-0. Kreiss, J. Lorenz, Initial-boundary Value Problems and the Navier-Stokes Equations. Academic Press (1989). MR 91a:35138
  • 26. T.G. Kurtz, Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics. Trans. Amer. Math. Soc.,186 (1973),259-272. MR 49:1256
  • 27. C. Lattanzio, P. Marcati, The zero relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors. Discrete Contin. Dynam. Systems, 5 (1999), no. 2, 449-455. MR 99m:35251
  • 28. C. Lattanzio, R. Natalini, Convergence of diffusive BGK approximation for parabolic systems. Proceedings of the Royal Society of Edinburg, 132, (2002), no. 2, 341-358. MR 2003e:35136
  • 29. C. Lattanzio, W.-A. Yong, Hyperbolic-Parabolic singular limits for first order nonlinear systems. Comm. Partial Differential Equations (to appear).
  • 30. P.D. Lax, Shock waves and entropy, Contributions to Nonlinear Functional Analysis, 603-634. Academic Press, New York 1971. MR 52:14677
  • 31. R. Lefever, G. Nicolis, Chemical instabilities and sustained oscillations. Journal of theoretical Biology, 30, (1971), 267.
  • 32. J.L. Lions, Perturbations singulieres dans les problèmes aux limites et en controle optimale, 323 (1973), Springer-Verlag, Berlin. MR 58:29078
  • 33. P.L. Lions, G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamericana, 13 (1997), no. 3, 473-513. MR 99g:76127
  • 34. T.-P. Liu, Hyperbolic conservation laws with relaxation. Comm. Math. Phys., 108 (1987), no. 1, 153-175. MR 88f:35092
  • 35. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions. Appl. Math. Sci., 53 (1984), Springer-Verlag. MR 85e:35077
  • 36. A. Majda and S. Osher, Initial-boundary Value Problems for hyperbolic Equations with Uniformly Characteristics Boundary. Comm. on Pure and Applied Math., 28 (1975), no. 5, 607-675. MR 53:13857
  • 37. P. Marcati, A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow. J. Differential Equations, 84 (1990), no. 1, 129-147. MR 91i:35156
  • 38. P. Marcati, A. Milani, P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system. Manuscripta Math., 60 (1988), no. 1, 49-69. MR 89f:35127
  • 39. P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal., 129 (1995), no. 2, 129-145. MR 96b:65088
  • 40. P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem. Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), no. 1, 115-131. MR 95k:35203
  • 41. P. Marcati, B. Rubino, Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differential Equations, 162 (2000), no. 2, 359-399. MR 2001d:35125
  • 42. H.P. McKean, The central limit theorem for Carleman's equation. Israel J. Math., 21 (1975), no. 1, 54-92. MR 54:11529
  • 43. G. Métivier, The block structure condition for symmetric hyperbolic systems. Bull. London Math. Soc., 32 (2000), no. 6, 689-702. MR 2001i:35198
  • 44. S. Mizohata, The theory of partial differential equations, Cambridge University Press, (1973). MR 58:29033
  • 45. F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 5 (1978), no. 3, 489-507. MR 80h:46043a
  • 46. G. Naldi, L. Pareschi, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. Preprint.
  • 47. G. Nicolis, I. Prigogine, Self-organizations in non-linear equilibrium systems, New York, Wiley-Interscience, (1971) MR 58:25436
  • 48. J. V. Ralston, Note on a paper of Kreiss. Comm. on Pure and Applied Math., 24 (1971), no. 6, 759-762. MR 58:29326
  • 49. B. Rubino, Weak solutions to quasilinear wave equations of Klein-Gordon or sine-Gordon type and relaxation to reaction-diffusion equations. Nonlinear Differential Equations and Appl., 4 (1997), no. 4, 439-457. MR 99f:35092
  • 50. D. Serre, Systèmes de lois de conservation. I, II Diderot Editeur, Paris, 1996. MR 99b:35139, MR 99e:35144
  • 51. D. Serre, Relaxation semi-linéaire et cinetique des systmes de lois de conservation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17, (2000), 169-192. MR 2001g:35159
  • 52. L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math., 39 (1979), 136-210. MR 81m:35014
  • 53. L. Tartar, The compensated compactness method applied to partial differential equations. Systems of Nonlinear Partial Differential Equations, Reidel, Dordrecht, 1983. NATO ASI. MR 85e:35079
  • 54. L. Tartar, H-measures, a new approach for studying homogenization and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburg Sect. A, 115 (1990), no. 3-4, 193-230. MR 91h:35042
  • 55. M.E. Taylor, Pseudodifferential Operators. volume 34 Princeton Mathematical Series, 34 (1981), Princeton University Press, Princeton, New Jersey. MR 82i:35172
  • 56. M.E. Taylor, Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics, 100 (1991), Birkäuser. MR 92j:35193
  • 57. M.E. Taylor, Partial Differential Equations I, II, III. Appl. Math. Sciences, 115-117 (1996), Springer-Verlag. MR 98b:35002b, MR 98b:35003, MR 98k:35001
  • 58. W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differential Equations, 155 (1999), no. 1, 89-132. MR 2000c:35011

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35L40, 35K40, 58J45, 58J37

Retrieve articles in all journals with MSC (2000): 35L40, 35K40, 58J45, 58J37

Additional Information

Donatella Donatelli
Affiliation: Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy

Pierangelo Marcati
Affiliation: Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy

Keywords: Hyperbolic systems, parabolic systems, pseudodifferential operators, relaxation theory
Received by editor(s): July 15, 2002
Received by editor(s) in revised form: March 26, 2003, and June 18, 2003
Published electronically: January 6, 2004
Additional Notes: This research was partially supported by EU financed network no. HPRN-CT-2002-00282 and by COFIN MIUR 2002 “Equazioni paraboliche e iperboliche nonlineari”
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society