Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A nonstandard Riemann existence theorem


Author: Rahim Moosa
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 1781-1797
MSC (2000): Primary 03C60; Secondary 32J99
Published electronically: January 6, 2004
MathSciNet review: 2031041
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study elementary extensions of compact complex spaces and deduce that every complete type of dimension $1$ is internal to projective space. This amounts to a nonstandard version of the Riemann Existence Theorem, and answers a question posed by Anand Pillay.


References [Enhancements On Off] (What's this?)

  • 1. F. Campana, Coréduction algébrique d’un espace analytique faiblement kählérien compact, Invent. Math. 63 (1981), no. 2, 187–223 (French). MR 610537 (84e:32028), http://dx.doi.org/10.1007/BF01393876
  • 2. H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn.\ Inform. (VINITI), Moscow. MR 1326617 (96k:32001)
  • 3. Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin, 1976. MR 0430286 (55 #3291)
  • 4. Akira Fujiki, On a holomorphic fiber bundle with meromorphic structure, Publ. Res. Inst. Math. Sci. 19 (1983), no. 1, 117–134. MR 700944 (84m:32038), http://dx.doi.org/10.2977/prims/1195182979
  • 5. Akira Fujiki, On the structure of compact complex manifolds in \cal𝐶, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 231–302. MR 715653 (85g:32045b)
  • 6. H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn.\ Inform. (VINITI), Moscow. MR 1326617 (96k:32001)
  • 7. Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall Inc., Englewood Cliffs, N.J., 1965. MR 0180696 (31 #4927)
  • 8. Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741 (94e:03002)
  • 9. R. Moosa.
    The model theory of compact complex spaces.
    To appear in the Proceedings of the Logic Colloquium '01 (Vienna).
  • 10. R. Moosa.
    On saturation and the model theory of compact Kähler manifolds.
    Preprint.
  • 11. R. Moosa.
    Contributions to the model theory of fields and compact complex spaces.
    PhD thesis, University of Illinois, Urbana-Champaign, 2001.
  • 12. H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn.\ Inform. (VINITI), Moscow. MR 1326617 (96k:32001)
  • 13. Anand Pillay, Some model theory of compact complex spaces, geometry (Ghent, 1999) Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 323–338. MR 1802020 (2001m:03076), http://dx.doi.org/10.1090/conm/270/04380
  • 14. Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156 (89b:03056)
  • 15. H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn.\ Inform. (VINITI), Moscow. MR 1326617 (96k:32001)
  • 16. Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin, 1975. Notes written in collaboration with P. Cherenack. MR 0506253 (58 #22062)
  • 17. B. Zilber.
    Model theory and algebraic geometry.
    In Proceedings of the 10th Easter Conference on Model Theory, Berlin, 1993.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 03C60, 32J99

Retrieve articles in all journals with MSC (2000): 03C60, 32J99


Additional Information

Rahim Moosa
Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1
Address at time of publication: Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
Email: moosa@math.mit.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03559-7
PII: S 0002-9947(04)03559-7
Received by editor(s): July 17, 2002
Published electronically: January 6, 2004
Additional Notes: This work was supported by the Natural Science and Engineering Research Council of Canada
Article copyright: © Copyright 2004 American Mathematical Society