Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homotopy equivalence of two families of complexes


Authors: Giandomenico Boffi and David A. Buchsbaum
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 3077-3107
MSC (2000): Primary 13D25
DOI: https://doi.org/10.1090/S0002-9947-04-03517-2
Published electronically: February 4, 2004
MathSciNet review: 2052942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit homotopy equivalence is established between two families of complexes, both of which generalize the classical Koszul complex.


References [Enhancements On Off] (What's this?)

  • 1. K. Akin, D. A. Buchsbaum and J. Weyman. Schur functors and Schur complexes. Advances in Math. 44 (1982), 207-278. MR 84c:20021
  • 2. D. A. Buchsbaum. A generalized Koszul complex, I. Trans. Amer. Math. Soc. 111 (1964), 183-196. MR 28:3075
  • 3. D. A. Buchsbaum and D. S. Rim. A generalized Koszul complex, II. Depth and multiplicity. Trans. Amer. Math. Soc. 111 (1964), 197-224. MR 28:3076
  • 4. D. A. Buchsbaum and D. S. Rim. A generalized Koszul complex, III. Proc. Amer. Math. Soc. 16 (1965), 555-558. MR 31:1285
  • 5. D. A. Buchsbaum and D. Eisenbud. Generic free resolutions and a family of generically perfect ideals. Advances in Math. 18 (1975), 245-301. MR 53:391
  • 6. J. Eagon and D.G. Northcott. Ideals defined by matrices and a certain complex associated with them. Proc. Roy. Soc. London Ser. A 269 (1962), 188-204. MR 26:161
  • 7. E. Gover. Generalized local complete intersections Thesis, Brandeis University (1970).
  • 8. S. Kleiman and A. Thorup. A geometric theory of the Buchsbaum-Rim multiplicity. J. Algebra 167 (1994), 168-231. MR 96a:14007
  • 9. S. Kleiman and A. Thorup. Mixed Buchsbaum-Rim multiplicities. Amer. J. Math. 118 (1996), 529-569. MR 98g:14008

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D25

Retrieve articles in all journals with MSC (2000): 13D25


Additional Information

Giandomenico Boffi
Affiliation: Dipartimento di Scienze, Università “G. d’Annunzio”, Viale Pindaro 42, 65127 Pescara, Italy
Email: gboffi@unich.it

David A. Buchsbaum
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
Email: buchsbau@brandeis.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03517-2
Received by editor(s): January 15, 2003
Published electronically: February 4, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society