Non-isotopic symplectic tori in the same homology class

Authors:
Tolga Etgü and B. Doug Park

Translated by:

Journal:
Trans. Amer. Math. Soc. **356** (2004), 3739-3750

MSC (2000):
Primary 57R17, 57R57; Secondary 53D35, 57R95

DOI:
https://doi.org/10.1090/S0002-9947-03-03529-3

Published electronically:
December 15, 2003

MathSciNet review:
2055752

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any pair of integers and , we construct an infinite family of mutually non-isotopic symplectic tori representing the homology class of an elliptic surface , where is the homology class of the fiber. We also show how such families can be non-isotopically and symplectically embedded into a more general class of symplectic -manifolds.

**[BZ]**G. Burde and H. Zieschang:*Knots*, de Gruyter Studies in Mathematics**5**, Walter de Gruyter, Berlin, New York, 1985. MR**87b:57004****[FS1]**R. Fintushel and R.J. Stern: Rational blowdowns of smooth 4-manifolds,*J. Differential Geom.***46**(1997), 181-235. MR**98j:57047****[FS2]**R. Fintushel and R.J. Stern: Knots, links and 4-manifolds,*Invent. Math.***134**(1998), 363-400. MR**99j:57033****[FS3]**R. Fintushel and R.J. Stern: Symplectic surfaces in a fixed homology class,*J. Differential Geom.***52**(1999), 203-222. MR**2001j:57036****[GS]**R.E. Gompf and A.I. Stipsicz:*-Manifolds and Kirby Calculus*, Graduate Studies in Mathematics**20**, Amer. Math. Soc., 1999. MR**2000h:57038****[Ma]**T. Matumoto: Extension problem of diffeomorphisms of a -torus over some -manifolds,*Hiroshima Math. J.***14**(1984), 189-201. MR**86b:57016****[MT]**C.T. McMullen and C.H. Taubes: -manifolds with inequivalent symplectic forms and -manifolds with inequivalent fibrations,*Math. Res. Lett.***6**(1999), 681-696. MR**2000m:57045****[Mo]**H.R. Morton: The multivariable Alexander polynomial for a closed braid, in*Low-dimensional Topology*, ed. Hanna Nencka,*Contemporary Mathematics***233**, Amer. Math. Soc. (1999), 167-172. Also available at arXiv:math.GT/9803138. MR**2000e:57025****[Pa]**B.D. Park: A gluing formula for the Seiberg-Witten invariant along ,*Michigan Math. J.***50**(2002), 593-611. MR**2003i:57051****[Ro]**D. Rolfsen:*Knots and Links*, Publish or Perish Inc., Houston, 1990; Corrected reprint of the 1976 original. MR**95c:57018****[ST1]**B. Siebert and G. Tian: On hyperelliptic -Lefschetz fibrations of four-manifolds,*Commun. Contemp. Math.***1**(1999), 255-280. Also available at arXiv:math.GT/9903006. MR**2001g:57053****[ST2]**B. Siebert and G. Tian: Tian's talk at the Conference on Holomorphic Curves and Low-Dimensional Topology, Institute for Advanced Study, March 2002.**[Si]**J-C. Sikorav: The gluing construction for normally generic -holomorphic curves,*Symplectic and contact topology: interactions and perspectives*, Fields Inst. Commun., 35, pp. 175-199, Amer. Math. Soc., Providence, RI, 2003. Also available at arXiv:math.SG/0102004.**[Sm]**I. Smith: Symplectic submanifolds from surface fibrations,*Pacific J. Math.***198**(2001), 197-205. MR**2002b:57029****[T1]**C.H. Taubes: The Seiberg-Witten invariants and symplectic forms,*Math. Res. Lett.***1**(1994), 809-822.**[T2]**C.H. Taubes: The Seiberg-Witten invariants and -manifolds with essential tori,*Geom. Topol.***5**(2001), 441-519. MR**2002d:57025****[V1]**S. Vidussi: Smooth structure of some symplectic surfaces,*Michigan Math. J.***49**(2001), 325-330. MR**2002f:57057****[V2]**S. Vidussi: Nonisotopic symplectic tori in the fiber class of elliptic surfaces,*preprint*. Available at`http://www.math.ksu.edu/~vidussi/`

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57R17,
57R57,
53D35,
57R95

Retrieve articles in all journals with MSC (2000): 57R17, 57R57, 53D35, 57R95

Additional Information

**Tolga Etgü**

Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Email:
etgut@math.mcmaster.ca

**B. Doug Park**

Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Email:
bdpark@math.uwaterloo.ca

DOI:
https://doi.org/10.1090/S0002-9947-03-03529-3

Received by editor(s):
December 13, 2002

Received by editor(s) in revised form:
June 6, 2003

Published electronically:
December 15, 2003

Additional Notes:
The second author was partially supported by an NSERC research grant.

Article copyright:
© Copyright 2003
American Mathematical Society