Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Varieties of tori and Cartan subalgebras of restricted Lie algebras


Author: Rolf Farnsteiner
Journal: Trans. Amer. Math. Soc. 356 (2004), 4181-4236
MSC (2000): Primary 17B50
DOI: https://doi.org/10.1090/S0002-9947-04-03476-2
Published electronically: April 16, 2004
MathSciNet review: 2058843
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper investigates varieties of tori and Cartan subalgebras of a finite-dimensional restricted Lie algebra $(\mathfrak{g},[p])$, defined over an algebraically closed field $k$ of positive characteristic $p$. We begin by showing that schemes of tori may be used as a tool to retrieve results by A. Premet on regular Cartan subalgebras. Moreover, they give rise to principal fibre bundles, whose structure groups coincide with the Weyl groups in case $\mathfrak{g}= \operatorname{Lie}(\mathcal{G})$ is the Lie algebra of a smooth group $\mathcal{G}$. For solvable Lie algebras, varieties of tori are full affine spaces, while simple Lie algebras of classical or Cartan type cannot have varieties of this type. In the final sections the quasi-projective variety of Cartan subalgebras of minimal dimension ${\rm rk}(\mathfrak{g})$ is shown to be irreducible of dimension $\dim_k\mathfrak{g}-{\rm rk}(\mathfrak{g})$, with Premet's regular Cartan subalgebras belonging to the regular locus.


References [Enhancements On Off] (What's this?)

  • 1. D. Barnes. On Cartan subalgebras of Lie algebras. Math. Z. 101 (1967), 350-355 MR 36:3837
  • 2. G. Benkart. Cartan subalgebras in Lie algebras of Cartan type. Canadian Mathematical Society Conference Proceedings 5 (1986), 157-187 MR 87f:17005
  • 3. R. Block and R. Wilson. Classification of the restricted simple Lie algebras. J. Algebra 114 (1988), 115-259 MR 89e:17014
  • 4. A. Borel. Linear Algebraic Groups. Graduate Texts in Mathematics 126. Springer-Verlag, 1991 MR 92d:20001
  • 5. D. Collingwood and W. McGovern. Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold, 1993 MR 94j:17001
  • 6. M. Demazure and P. Gabriel. Groupes Algébriques I. Masson, North-Holland, 1970 MR 46:1800
  • 7. S. Demuskin. Cartan subalgebras of the simple Lie-$p$-algebras $W_n$ and $S_n$. Siberian Math. J. 11 (1970), 233-245 MR 41:6919
  • 8. -. Cartan subalgebras of simple non-classical Lie algebras. Math. USSR Izv. 6 (1976), 905-924
  • 9. D. Eisenbud. Commutative Algebra. Graduate Texts in Mathematics 150. Springer-Verlag, 1995 MR 97a:13001
  • 10. R. Farnsteiner and D. Voigt. On cocommutative Hopf algebras of finite representation type. Adv. in Math. 155 (2000), 1-22 MR 2001e:16070
  • 11. -. Schemes of tori and the structure of tame restricted Lie algebras. J. London Math. Soc. 63 (2001), 553-570 MR 2002a:17011
  • 12. -. On infinitesimal groups of tame representation type. Math. Z. 244 (2003), 479-513
  • 13. G. Hochschild. Cohomology of restricted Lie algebras. Amer. J. Math. 76 (1954), 555-580 MR 16:109a
  • 14. J. Humphreys. Algebraic Groups and Modular Lie Algebras. Mem. Amer. Math. Soc. 71 (1967) MR 36:169
  • 15. -. Linear Algebraic Groups. Graduate Texts in Mathematics 21. Springer-Verlag, 1975 MR 53:633
  • 16. J. Jantzen. Representations of Algebraic Groups. Pure and Applied Mathematics 131. Academic Press, 1987 MR 89c:20001
  • 17. N. Jacobson. Basic Algebra I. Freeman & Co., San Francisco, 1974 MR 50:9457
  • 18. H. Kurke, G. Pfister and M. Roczen. Henselsche Ringe und algebraische Geometrie. Mathematische Monographien 11. VEB Deutscher Verlag der Wissenschaften, 1975 MR 58:10899
  • 19. J. Lepotier. Lectures on Vector Bundles. Cambridge Studies in Adavanced Mathematics, 54. Cambridge University Press, 1999 MR 98a:14019
  • 20. H. Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, 1997
  • 21. D. Mumford. The Red Book of Varieties and Schemes. Lecture Notes in Mathematics 1358. Springer-Verlag, 1999 MR 2001b:14001
  • 22. A. Premet. On Cartan subalgebras of Lie-p-algebras. Math. USSR Izvestiya 29 (1987), 145-157 MR 88d:17012
  • 23. -. Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras. Math. USSR Sbornik 66 (1990), 555-570 MR 90g:17017
  • 24. D. Quillen. Projective modules over polynomial rings. Invent. Math. 36 (1976), 167-171 MR 55:337
  • 25. G. Seligman. Modular Lie algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 40 Springer-Verlag, New York 1967 MR 39:6933
  • 26. I. Shafarevich. Basic Algebraic Geometry 1. Springer-Verlag, 1994
  • 27. -. Basic Algebraic Geometry 2. Springer-Verlag, 1997
  • 28. T. Springer. Linear Algebraic Groups. Birkhäuser Verlag, 1981 MR 84i:20002
  • 29. H. Strade and R. Farnsteiner. Modular Lie Algebras and their Representations. Pure and Applied Mathematics 116. Marcel Dekker, 1988 MR 89h:17021
  • 30. D. Winter. On the toral structure of Lie-p-algebras. Acta Math. 123 (1969), 69-81 MR 40:4326

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B50

Retrieve articles in all journals with MSC (2000): 17B50


Additional Information

Rolf Farnsteiner
Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
Email: rolf@mathematik.uni-bielefeld.de

DOI: https://doi.org/10.1090/S0002-9947-04-03476-2
Received by editor(s): May 23, 2002
Received by editor(s) in revised form: July 19, 2003
Published electronically: April 16, 2004
Additional Notes: Supported by a Mercator Professorship of the D.F.G
Dedicated: Dedicated to Claus Michael Ringel on the occasion of his sixtieth birthday
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society