Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A modified Brauer algebra as centralizer algebra of the unitary group


Author: Alberto Elduque
Journal: Trans. Amer. Math. Soc. 356 (2004), 3963-3983
MSC (2000): Primary 20G05, 17B10
DOI: https://doi.org/10.1090/S0002-9947-04-03602-5
Published electronically: May 10, 2004
MathSciNet review: 2058514
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The centralizer algebra of the action of $U(n)$ on the real tensor powers $\otimes_\mathbb{R}^r V$ of its natural module, $V=\mathbb{C}^n$, is described by means of a modification in the multiplication of the signed Brauer algebras. The relationships of this algebra with the invariants for $U(n)$ and with the decomposition of $\otimes_\mathbb{R}^r V$ into irreducible submodules is considered.


References [Enhancements On Off] (What's this?)

  • 1. E. Abbena and S. Garbiero, Almost Hermitian homogeneous structures, Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 3, 375-395. MR 90c:53119
  • 2. G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, and J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529-567. MR 95d:20071
  • 3. J.S. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), no. 1, 249-273. MR 90g:57004
  • 4. R. Brauer, On algebras which are connected with semisimple Lie groups, Ann. of Math. 38 (1937), 857-872.
  • 5. P. Fortuny, and P. Martínez Gadea, On the classification theorems of almost-Hermitian or homogeneous Kähler structures, to appear in Rocky Mountain. J. Math.
  • 6. W. Fulton and J. Harris, Representation theory. A first course, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, Readings in Mathematics. MR 93a:20069
  • 7. A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58. MR 81m:53045
  • 8. T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okasa, Brauer, and Birman-Wenzl algebras, Adv. Math. 116 (1995), no. 2, 263-321. MR 96k:16023
  • 9. P. Hanlon and D. Wales, On the decomposition of Brauer's centralizer algebras, J. Algebra 121 (1989), no. 2, 409-445. MR 91a:20041a
  • 10. N. Iwahori, Some remarks on tensor invariants of ${\rm O}(n), {\rm U}(n),{\rm Sp}(n)$, J. Math. Soc. Japan 10 (1958), 145-160. MR 23:A1722
  • 11. M. Jimbo, A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252. MR 87k:17011
  • 12. R. Leduc and A. Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras, Adv. Math. 125 (1997), no. 1, 1-94. MR 98c:20015
  • 13. J. Murakami, The representations of the $q$-analogue of Brauer's centralizer algebras and the Kauffman polynomial of links, Publ. Res. Inst. Math. Sci. 26 (1990), no. 6, 935-945. MR 91m:57004
  • 14. M. Parvathi and M. Kamaraj, Signed Brauer's algebras, Comm. Algebra 26 (1998), no. 3, 839-855. MR 99c:16028
  • 15. M. Parvathi and C. Selvaraj, Signed Brauer's algebras as centralizer algebras, Comm. Algebra 27 (1999), no. 12, 5985-5998. MR 2000j:16051
  • 16. I. Schur, Über eine Klasse von Matrixen die sich einer gegebenen Matrix zuordnen lassen. Thesis, Berlin, 1901. Reprinted in Gesammelte Abhandlungen, Band I, Springer-Verlag, Berlin, 1973, Herausgegeben von Alfred Brauer und Hans Rohrbach. MR 57:2858a
  • 17. -, Über die rationalen Darstellungen der allgemeinen linearen Gruppe. 1927. Reprinted in Gesammelte Abhandlungen, Band III, Springer-Verlag, Berlin, 1973, Herausgegeben von Alfred Brauer und Hans Rohrbach. MR 57:2858c
  • 18. J.R. Stembridge, Rational tableaux and the tensor algebra of ${\rm gl}\sb n$, J. Combin. Theory Ser. A 46 (1987), no. 1, 79-120. MR 89a:05012
  • 19. H. Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math. (2) 128 (1988), no. 1, 173-193. MR 89h:20059
  • 20. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. MR 1:42c

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G05, 17B10

Retrieve articles in all journals with MSC (2000): 20G05, 17B10


Additional Information

Alberto Elduque
Affiliation: Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
Email: elduque@unizar.es

DOI: https://doi.org/10.1090/S0002-9947-04-03602-5
Keywords: Brauer algebra, unitary group, centralizer
Received by editor(s): June 9, 2003
Published electronically: May 10, 2004
Additional Notes: This research was supported by the Spanish Ministerio de Ciencia y Tecnología and FEDER (BFM 2001-3239-C03-03)
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society