Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Quantum cohomology of partial flag manifolds


Author: Anders Skovsted Buch
Journal: Trans. Amer. Math. Soc. 357 (2005), 443-458
MSC (2000): Primary 14N35; Secondary 14M15, 05E15
Published electronically: September 2, 2004
MathSciNet review: 2095617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give elementary geometric proofs of the structure theorems for the (small) quantum cohomology of partial flag varieties $\operatorname{SL}(n)/P$, including the quantum Pieri and quantum Giambelli formulas and the presentation.


References [Enhancements On Off] (What's this?)

  • 1. A. Astashkevich and V. Sadov, Quantum cohomology of partial flag manifolds $F\sb {n\sb 1\cdots n\sb k}$, Comm. Math. Phys. 170 (1995), 503-528. MR 96g:58027
  • 2. A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289-305. MR 98j:14067
  • 3. A. S. Buch, A direct proof of the quantum version of Monk's formula, Proc. Amer. Math. Soc. 131 (2003), 2037-2042. MR 2004e:14081
  • 4. -, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), 227-235. MR 2004c:14105
  • 5. A. S. Buch, A. Kresch, H. Tamvakis, and A. Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125-143.
  • 6. I. Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices (1995), 263-277. MR 96h:14071
  • 7. -, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), 485-524. MR 2000d:14058
  • 8. S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565-596. MR 98d:14063
  • 9. W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, 1997, pp. 45-96. MR 98m:14025
  • 10. A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), 609-641. MR 96c:58027
  • 11. B. Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices (1995), 1-15. MR 96c:58028
  • 12. -, On equivariant quantum cohomology, Internat. Math. Res. Notices (1996), 841-851. MR 98h:14013
  • 13. -, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, Ann. of Math. (2) 149 (1999),129-148. MR 2001c:14081
  • 14. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, 1997, pp. 607-653. MR 97d:00024
  • 15. A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450. MR 83e:14039
  • 16. I. G. Macdonald, Notes on Schubert polynomials, Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal, 1991.
  • 17. A. Postnikov, On a quantum version of Pieri's formula, Advances in geometry, Progr. Math., vol. 172, 1999, pp. 371-383. MR 99m:14096
  • 18. Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269-278. MR 95b:58025
  • 19. B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), 679-695. MR 99d:14060
  • 20. F. Sottile, Pieri's formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), 89-110. MR 97g:14035
  • 21. E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, 1995, pp. 357-422. MR 98c:58016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14N35, 14M15, 05E15

Retrieve articles in all journals with MSC (2000): 14N35, 14M15, 05E15


Additional Information

Anders Skovsted Buch
Affiliation: Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
Email: abuch@imf.au.dk

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03655-4
PII: S 0002-9947(04)03655-4
Received by editor(s): March 12, 2003
Published electronically: September 2, 2004
Article copyright: © Copyright 2004 American Mathematical Society