Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Measurable Kac cohomology for bicrossed products


Authors: Saad Baaj, Georges Skandalis and Stefaan Vaes
Journal: Trans. Amer. Math. Soc. 357 (2005), 1497-1524
MSC (2000): Primary 22D05; Secondary 55N99, 20J06
DOI: https://doi.org/10.1090/S0002-9947-04-03734-1
Published electronically: November 23, 2004
MathSciNet review: 2115374
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Kac cohomology for matched pairs of locally compact groups. This cohomology theory arises from the extension theory of locally compact quantum groups. We prove a measurable version of the Kac exact sequence and provide methods to compute the cohomology. We give explicit calculations in several examples using results of Moore and Wigner.


References [Enhancements On Off] (What's this?)

  • 1. N. ANDRUSKIEWITSCH, Notes on extensions of Hopf algebras. Can. J. Math. 48 (1996), 3-42. MR 1382474 (97c:16046)
  • 2. W. ARVESON, An invitation to C$^*$-algebras. Graduate Texts in Mathematics, No. 39. Springer-Verlag, New York-Heidelberg, 1976. MR 0512360 (58:23621)
  • 3. S. BAAJ & G. SKANDALIS, Unitaires multiplicatifs et dualité pour les produits croisés de C$^*$-algèbres. Ann. Scient. Ec. Norm. Sup., $4{}^e$ série, 26 (1993), 425-488. MR 1235438 (94e:46127)
  • 4. S. BAAJ & G. SKANDALIS, Transformations pentagonales. C.R. Acad. Sci., Paris, Sér. I 327 (1998), 623-628. MR 1652717 (99k:28018)
  • 5. S. BAAJ, G. SKANDALIS & S. VAES, Non-semi-regular quantum groups coming from number theory. Commun. Math. Phys. 235 (2003), 139-167. MR 1969723 (2004g:46083)
  • 6. G.E. BREDON, Sheaf theory. McGraw-Hill, New York, 1967. MR 0221500 (36:4552)
  • 7. R. BROWN & K.C. MACKENZIE, Determination of a double Lie groupoid by its core diagram. J. Pure Appl. Algebra 80 (1992), 237-272. MR 1170713 (93g:55022)
  • 8. R. BROWN & C.B. SPENCER, Double groupoids and crossed modules. Cahiers Topologie Géom. Différentielle 17 (1976), 343-362. MR 0440553 (55:13427)
  • 9. D.A. BUCHSBAUM, Satellites and universal functors. Ann. of Math. 71 (1960), 199-209. MR 0112905 (22:3751)
  • 10. J. DIXMIER, Dual et quasi-dual d'une algèbre de Banach involutive. Trans. Amer. Math. Soc. 104 (1963), 273-283. MR 0139960 (25:3384)
  • 11. A. GUICHARDET, Cohomologie des groupes topologiques et des algèbres de Lie. Editions Cedic/Fernand Nathan, Paris, 1980. MR 0644979 (83f:22004)
  • 12. D. HUSEMOLLER, Fibre bundles. McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247 (37:4821)
  • 13. G.I. KAC, Extensions of groups to ring groups. Math. USSR Sbornik 5 (1968), 451-474.
  • 14. J. KUSTERMANS & S. VAES, Locally compact quantum groups. Ann. Scient. Ec. Norm. Sup. 33 (2000), 837-934. MR 1832993 (2002f:46108)
  • 15. J. KUSTERMANS & S. VAES, Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92 (1) (2003), 68-92. MR 1951446 (2003k:46081)
  • 16. M.B. LANDSTAD, Duality theory for covariant systems. Trans. Amer. Math. Soc. 248 (1979), 223-267. MR 0522262 (80j:46107)
  • 17. S. MAC LANE, Homology. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879 (28:122)
  • 18. S. MAJID, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), 17-64. MR 1045735 (91j:16050)
  • 19. S. MAJID, Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Funct. Anal. 95 (1991), 291-319. MR 1092128 (92b:46088)
  • 20. A. MASUOKA, Extensions of Hopf Algebras and Lie Bialgebras. Trans. of the AMS 352, No. 8 (2000), 3837-3879. MR 1624190 (2000m:17017)
  • 21. C.C. MOORE, Group extensions and cohomology for locally compact groups. III & IV. Trans. Amer. Math. Soc. 221 (1976), 1-33 & 35-58. MR 0414775 (54:2867), MR 0414776 (54:2868)
  • 22. P. SCHAUENBURG, Hopf bimodules, coquasibialgebras, and an exact sequence of Kac. Adv. Math. 165 (2002), 194-263. MR 1887584 (2003e:16052)
  • 23. S. VAES & L. VAINERMAN, Extensions of locally compact quantum groups and the bicrossed product construction. Adv. in Math. 175 (1) (2003), 1-101. MR 1970242 (2004i:46103)
  • 24. S. VAES & L. VAINERMAN, On low-dimensional locally compact quantum groups. In Locally Compact Quantum Groups and Groupoids. Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February 21 - 23, 2002., Ed. L. Vainerman, IRMA Lectures on Mathematics and Mathematical Physics, Walter de Gruyter, Berlin, New York (2003), pp. 127-187. MR 1976945 (2004f:17024)
  • 25. D. WIGNER, Algebraic cohomology of topological groups. Trans. Amer. Math. Soc. 178 (1973), 83-93. MR 0338132 (49:2898)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22D05, 55N99, 20J06

Retrieve articles in all journals with MSC (2000): 22D05, 55N99, 20J06


Additional Information

Saad Baaj
Affiliation: Laboratoire de Mathématiques Pures, Université Blaise Pascal, Bâtiment de Mathématiques, F–63177 Aubière Cedex, France
Email: Saad.Baaj@math.univ-bpclermont.fr

Georges Skandalis
Affiliation: Algèbres d’Opérateurs et Représentations, Institut de Mathématiques de Jussieu, 175, rue du Chevaleret, F–75013 Paris, France
Email: skandal@math.jussieu.fr

Stefaan Vaes
Affiliation: Algèbres d’Opérateurs et Représentations, Institut de Mathématiques de Jussieu, 175, rue du Chevaleret, F–75013 Paris, France – and – Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
Email: vaes@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-04-03734-1
Keywords: Measurable cohomology, locally compact quantum groups, extensions, Kac exact sequence
Received by editor(s): October 24, 2003
Published electronically: November 23, 2004
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society