Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence and asymptotic behavior for a singular parabolic equation


Authors: Juan Dávila and Marcelo Montenegro
Journal: Trans. Amer. Math. Soc. 357 (2005), 1801-1828
MSC (2000): Primary 35B40, 35K55
DOI: https://doi.org/10.1090/S0002-9947-04-03811-5
Published electronically: December 29, 2004
MathSciNet review: 2115077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove global existence of nonnegative solutions to the singular parabolic equation $u_t -\Delta u + \raise 1.5pt\hbox{$\chi$ }_{ \{ u>0 \} } ( -u^{-\beta} + \lambda f(u) )=0$ in a smooth bounded domain $\Omega\subset\mathbb{R} ^N$ with zero Dirichlet boundary condition and initial condition $u_0 \in C(\Omega)$, $u_0 \geq 0$. In some cases we are also able to treat $u_0 \in L^\infty(\Omega)$. Then we show that if the stationary problem admits no solution which is positive a.e., then the solutions of the parabolic problem must vanish in finite time, a phenomenon called ``quenching''. We also establish a converse of this fact and study the solutions with a positive initial condition that leads to uniqueness on an appropriate class of functions.


References [Enhancements On Off] (What's this?)

  • [AK] A. Acker and B. Kawohl, Remarks on quenching. Nonlinear Anal. 13 (1989), 53-61. MR 0973368 (90c:35007)
  • [A] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Clarendon Press, Oxford, 1975.
  • [B] H. T. Banks, Modeling and control in the biomedical sciences. Lecture Notes in Biomathematics, Vol. 6. Springer-Verlag, Berlin-New York, 1975. MR 0401201 (53:5030)
  • [BC] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data. J. Anal. Math. 68 (1996), 277-304. MR 1403259 (97f:35092)
  • [BCMR] H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow-up for $u\sb t-\Delta u=g(u)$ revisited. Adv. Differential Equations 1 (1996), 73-90. MR 1357955 (96i:35063)
  • [CK] C.Y. Chan and M.K. Kwong, Quenching phenomena for singular nonlinear parabolic equations. Nonlinear Anal. 12 (1988), 1377-1383. MR 0972406 (90a:35110)
  • [Da] J. Dávila, Global regularity for a singular equation and local $H^1$ minimizers of a nondifferentiable functional. Commun. in Contemporary Mathematics 6 (2004), 165-193. MR 2048779
  • [DM1] J. Dávila and M. Montenegro, Positive versus free boundary solutions to a singular equation. J. Anal. Math. 90 (2003), 303-335. MR 2001074
  • [DM2] J. Dávila and M. Montenegro, A singular equation with positive and free boundary solutions. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), 107-112. MR 2037228 (2004m:35097)
  • [DL] K. Deng and H.A. Levine On the blow up of $u\sb t$ at quenching. Proc. Amer. Math. Soc. 106 (1989), 1049-1056. MR 0969520 (90f:35030)
  • [D] J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Pitman (Advanced Publishing Program), Boston, MA, 1985, Elliptic equations. MR 0853732 (88d:35058)
  • [FH] M. Fila and J. Hulshof, A note on the quenching rate. Proc. Amer. Math. Soc. 112 (1991), no. 2, 473-477. MR 1055772 (92a:35090)
  • [FHQ] M. Fila, J. Hulshof and P. Quittner, The quenching problem on the $N$-dimensional ball. Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), 183-196, Progr. Nonlinear Differential Equations Appl., 7, Birkhäuser Boston, Boston, MA, 1992. MR 1167839 (93c:35078)
  • [FK] M. Fila and B. Kawohl, Is quenching in infinite time possible?. Quart. Appl. Math. 48 (1990), 531-534. MR 1074968 (91h:35054)
  • [FK2] M. Fila and B. Kawohl, Asymptotic analysis of quenching problems. Rocky Mountain J. Math. 22 (1992), 563-577. MR 1180720 (93h:35093)
  • [FKL] M. Fila, B. Kawohl and H.A. Levine, Quenching for quasilinear equations. Comm. Partial Differential Equations 17 (1992), 593-614. MR 1163438 (93f:35101)
  • [FLV] M. Fila, H.A. Levine and J.L. Vázquez, Stabilization of solutions of weakly singular quenching problems. Proc. Amer. Math. Soc. 119 (1993), 555-559. MR 1174490 (93k:35146)
  • [FG] S. Filippas and J. Guo, Quenching profiles for one-dimensional semilinear heat equations. Quart. Appl. Math. 51 (1993), 713-729. MR 1247436 (95b:35029)
  • [GL] C. Gui and F.H. Lin, Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 1021-1029. MR 1263903 (94m:35115)
  • [Gu] J. Guo, On the quenching rate estimate. Quart. Appl. Math. 49 (1991), 747-752. MR 1134750 (92j:35097)
  • [K] H. Kawarada, On solutions of initial-boundary problem for $u\sb{t}=u\sb{xx}+1/(1-u)$. Publ. Res. Inst. Math. Sci. 10 (1974/75), 729-736. MR 0385328 (52:6192)
  • [LSU] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1967. MR 0241822 (39:3159b)
  • [L] H.A. Levine, Quenching and beyond: a survey of recent results. Nonlinear mathematical problems in industry, II (Iwaki, 1992), 501-512, GAKUTO Internat. Ser. Math. Sci. Appl., 2, Gakkotosho, Tokyo, 1993. MR 1370487 (96h:35089)
  • [P] D. Phillips, Existence of solutions of quenching problems. Appl. Anal. 24 (1987), 253-264. MR 0907341 (88k:35101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B40, 35K55

Retrieve articles in all journals with MSC (2000): 35B40, 35K55


Additional Information

Juan Dávila
Affiliation: Departamento de Ingeniería Matemática, CMM (UMR CNRS), Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile
Email: jdavila@dim.uchile.cl

Marcelo Montenegro
Affiliation: Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Caixa Postal 6065, CEP 13084-970, Campinas, SP, Brasil
Email: msm@ime.unicamp.br

DOI: https://doi.org/10.1090/S0002-9947-04-03811-5
Keywords: Singular parabolic equation, quenching problem
Received by editor(s): July 18, 2003
Published electronically: December 29, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society