Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Descent representations and multivariate statistics

Authors: Ron M. Adin, Francesco Brenti and Yuval Roichman
Journal: Trans. Amer. Math. Soc. 357 (2005), 3051-3082
MSC (2000): Primary 05E10, 13A50; Secondary 05A19, 13F20, 20C30
Published electronically: July 16, 2004
MathSciNet review: 2135735
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Combinatorial identities on Weyl groups of types $A$ and $B$ are derived from special bases of the corresponding coinvariant algebras. Using the Garsia-Stanton descent basis of the coinvariant algebra of type $A$ we give a new construction of the Solomon descent representations. An extension of the descent basis to type $B$, using new multivariate statistics on the group, yields a refinement of the descent representations. These constructions are then applied to refine well-known decomposition rules of the coinvariant algebra and to generalize various identities.

References [Enhancements On Off] (What's this?)

  • 1. R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math. 27 (2001), 210-224.
  • 2. R. M. Adin and Y. Roichman, A flag major index for signed permutations, Proc. 11-th Conference on Formal Power Series and Algebraic Combinatorics, Universitat Politècnica de Catalunya, Barcelona, 1999, 10-17.
  • 3. R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, Europ. J. Combin. 22 (2001), 431-446. MR 2002d:05004
  • 4. E. E. Allen, The descent monomials and a basis for the diagonally symmetric polynomials, J. Alg. Combin. 3 (1994), 5-16. MR 95e:05121
  • 5. S. Ariki, T. Terasoma and H. F. Yamada, Higher Specht polynomials, Hiroshima Math. J. 27 (1997), 177-188. MR 98c:05163
  • 6. H. Barcelo, Young straightening in a quotient $S_n$-module, J. Alg. Combin. 2 (1993), 5-23. MR 94b:20016
  • 7. I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Schubert cells and cohomology of Schubert spaces $G/P$, Usp. Mat. Nauk. 28 (1973), 3-26. MR 55:2941
  • 8. A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer-Verlag, to appear.
  • 9. F. Brenti, $q$-Eulerian polynomials arising from Coxeter groups, Europ. J. Combin. 15 (1994), 417-441. MR 95i:05013
  • 10. M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. MR 49:7268
  • 11. D. Foata, personal communication, July 2000.
  • 12. D. Foata and G. N. Han, Calcul basique des permutations signees. I. Longueur et nombre d'inversions, Adv. Appl. Math. 18 (1997), 489-509. MR 98c:05001a
  • 13. A. M. Garsia, Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. Math. 38 (1980), 229-266. MR 82f:06002
  • 14. A. M. Garsia, On the ``maj'' and ``inv'' $q$-analogues of Eulerian polynomials, Linear and Multilinear Algebra 8 (1979/80), 21-34. MR 81h:05017
  • 15. A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), 82-138. MR 93j:20030
  • 16. A. M. Garsia and J. Remmel, Shuffles of permutations and the Kronecker product, Graphs and Combinatorics 1 (1985), 217-263. MR 89h:05006
  • 17. A. M. Garsia and D. Stanton, Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. Math. 51 (1984), 107-201. MR 86f:20003
  • 18. I. M. Gessel, Generating functions and enumeration of sequences, Ph.D. Thesis, M.I.T., 1977.
  • 19. I. M. Gessel, Multipartite $P$-partitions and inner products of Schur functions, Contemp. Math. 34 (1984), 289-302. MR 86k:05007
  • 20. H. L. Hiller, Geometry of Coxeter Groups, Res. Notes in Math. 54, Pitman, Boston, 1982. MR 83h:14045
  • 21. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, no. 29, Cambridge Univ. Press, Cambridge, 1990. MR 92h:20002
  • 22. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 81j:20066
  • 23. W. Kraskiewicz and J. Weyman, Algebra of coinvariants and the action of a Coxeter element, Bayreuther Math. Schriften 63 (2001), 265-284 (preprint: University of Torun, 1987). MR 2002j:20026
  • 24. I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1995. MR 96h:05207
  • 25. P. A. MacMahon, Combinatory Analysis, Chelsea, New York, 1960. (Originally published in 2 vols. by Cambridge University Press, 1915-1916.) MR 25:5003
  • 26. H. Morita and H. F. Yamada, Higher Specht polynomials for the complex reflection group $G(r,p,n)$, Hokkaido Math. J. 27 (1998), 505-515. MR 99k:20085
  • 27. V. Reiner, Signed permutation statistics, Europ. J. Combin. 14 (1993), 553-567. MR 95e:05008
  • 28. C. Reutenauer, Free Lie Algebras, London Math. Soc. Monographs, New Series 7, Oxford Univ. Press, 1993. MR 94j:17002
  • 29. B. E. Sagan, The Symmetric Group: Representations,Combinatorial Algorithms & Symmetric Functions, Wadsworth & Brooks/Cole, 1991. MR 93f:05102
  • 30. L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376-393. MR 33:7424
  • 31. T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293. MR 58:11154
  • 32. R. P. Stanley, Ordered Structures and Partitions, Memoirs Amer. Math. Soc. no. 119, 1972. MR 48:10836
  • 33. R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (new series) 1 (1979), 475-511. MR 81a:20015
  • 34. R. P. Stanley, Some aspects of group acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132-161. MR 83d:06002
  • 35. R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1986. MR 87j:05003
  • 36. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge Univ. Press, Cambridge, 1999. MR 2000k:05026
  • 37. R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173-177. MR 51:9101
  • 38. J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989), 353-396. MR 91a:20022
  • 39. T. Terasoma and H. F. Yamada, Higher Specht polynomials for the symmetric group, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 41-44. MR 94b:20020

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 05E10, 13A50, 05A19, 13F20, 20C30

Retrieve articles in all journals with MSC (2000): 05E10, 13A50, 05A19, 13F20, 20C30

Additional Information

Ron M. Adin
Affiliation: Department of Mathematics and Statistics, Bar-Ilan University, Ramat-Gan 52900, Israel

Francesco Brenti
Affiliation: Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy

Yuval Roichman
Affiliation: Department of Mathematics and Statistics, Bar-Ilan University, Ramat-Gan 52900, Israel

Received by editor(s): October 13, 2002
Received by editor(s) in revised form: August 15, 2003
Published electronically: July 16, 2004
Additional Notes: The research of all authors was supported in part by the EC’s IHRP programme, within the Research Training Network “Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272, by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by internal research grants from Bar-Ilan University
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society