Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The smoothing property for a class of doubly nonlinear parabolic equations


Authors: Carsten Ebmeyer and José Miguel Urbano
Journal: Trans. Amer. Math. Soc. 357 (2005), 3239-3253
MSC (2000): Primary 35K65; Secondary 35R35, 76S05
DOI: https://doi.org/10.1090/S0002-9947-05-03790-6
Published electronically: January 27, 2005
MathSciNet review: 2135744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a class of doubly nonlinear parabolic equations used in modeling free boundaries with a finite speed of propagation. We prove that nonnegative weak solutions satisfy a smoothing property; this is a well-known feature in some particular cases such as the porous medium equation or the parabolic $p$-Laplace equation. The result is obtained via regularization and a comparison theorem.


References [Enhancements On Off] (What's this?)

  • 1. D.G. Aronson and Ph. Bénilan, Régularité des solutions de l'équation des milieux poreux dans $\mathbb{R}^n$, C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103-A105. MR 0524760 (82i:35090)
  • 2. G.I. Barenblatt, On self-similar motions of compressible fluids in porous media, Prik. Math Mech. 16 (1952), 679-698. (Russian) MR 0052948 (14:699h)
  • 3. F. Bernis, Existence results for doubly nonlinear higher order parabolic equations on unbounded domains, Math. Ann. 279 (1988), 373-394. MR 0922422 (89j:35062)
  • 4. D. Blanchard and G. Francfort, Study of a doubly nonlinear heat equation with no growth assumption on the parabolic term, SIAM J. Math. Anal 19 (1988), 1032-1056. MR 0957665 (90e:35087a)
  • 5. L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), 361-391. MR 0570687 (82a:35096)
  • 6. M.G. Crandall and M. Pierre, Regularization effects for $u_t+A \varphi(u)=0$ in $L^1$, J. Funct. Anal. 45 (1982), no. 2, 194-212. MR 0647071 (83g:34071)
  • 7. M.G. Crandall and M. Pierre, Regularization effects for $u_t+\Delta \varphi(u)=0$, Trans. Amer. Math. Soc. 274 (1982), no. 1, 159-168. MR 0670925 (84h:35081)
  • 8. J.L. Diaz and J.F. Padial, Uniqueness and existence of solutions in the $BV_t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Math. Barc. 40 (1996), 527-560.MR 1425634 (97j:35078)
  • 9. E. DiBenedetto, Degenerate Parabolic Equations, New York, Springer-Verlag, 1993.MR 1230384 (94h:35130)
  • 10. E. DiBenedetto, J.M. Urbano and V. Vespri, Current issues on singular and degenerate evolution equations, in: Handbook of Differential Equations, Evolutionary Equations, volume 1 (C.M. Dafermos and E. Feireisl eds.), Elsevier B.V., 2004.
  • 11. C. Ebmeyer, Error estimates for a class of degenerate parabolic equations, SIAM J. Num. Anal. 35 (1998), 1095-1112.MR 1619863 (99e:65125)
  • 12. C. Ebmeyer, A non-degeneracy property for a class of degenerate parabolic equations, Zeit. Anal. Anwend. 15 (1996), 637-650.MR 1406080 (97e:35096)
  • 13. C. Ebmeyer and J.M. Urbano, Regularity in Sobolev spaces for doubly nonlinear parabolic equations, J. Differential Equations 187 (2003), no. 2, 375-390. MR 1949446 (2003m:35113)
  • 14. J.R. Esteban and J.L. Vazquez, Homogeneous diffusion in $\mathbb{R}$ with power-like nonlinear diffusivity, Arch. Rat. Mech. Anal. 103 (1988), 39-80. MR 0946969 (89j:35064)
  • 15. J.R. Esteban and J.L. Vazquez, Régularité des solutions positives de l'équation parabolique $p$-Laplacienne, C. R. Acad. Sci. Paris Sér I 310 (1990), 105-110.MR 1044625 (91i:35036)
  • 16. J. Filo, Local existence and $L^\infty$-estimate of weak solutions to a nonlinear degenerate parabolic equation with nonlinear boundary data, Panam. Math. J. 4 (1994), no. 3, 1-31.MR 1290044 (95h:35120)
  • 17. M.A. Herrero and J.L. Vazquez, The one-dimensional nonlinear heat equation with absorption: regularity of solutions and interfaces, SIAM J. Math. Anal 18 (1987), 149-167.MR 0871827 (88a:35124)
  • 18. A.V. Ivanov, Existence and uniqueness of a regular solution of the Cauchy-Dirichlet problem for doubly nonlinear parabolic equations, Zeit. Anal. Anwend. 14 (1995), 751-777.MR 1376576 (96m:35173)
  • 19. A.V. Ivanov, Regularity for doubly nonlinear parabolic equations, J. Math. Sci. 83 (1997), no. 1, 22-37. MR 1328634 (96b:35096)
  • 20. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod, 1969.MR 0259693 (41:4326)
  • 21. F. Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), 20-38. MR 1415045 (97i:35125)
  • 22. M.M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations 103 (1993), 146-178. MR 1218742 (94d:35015)
  • 23. F. Simondon, Effet régularisant local pour $u_t=(\phi(u))_{xx}$, C. R. Acad. Sci. Paris Sér I 299 (1984), 969-972.MR 0774680 (86j:35094)
  • 24. J.M. Urbano, Hölder continuity of local weak solutions for parabolic equations exhibiting two degeneracies, Adv. Differential Equations 6 (2001), no. 3, 327-358. MR 1799489 (2001j:35173)
  • 25. J.M. Urbano, Continuous solutions for a degenerate free boundary problem, Ann. Mat. Pura Appl. (IV) 178 (2000), 195-224. MR 1849386 (2002h:35353)
  • 26. J.L. Vazquez and M. Wallas, Existence and uniqueness of solutions of diffusion-absorption equations with general data, Differ. Integral Equations 7 (1994), 15-36. MR 1250936 (94k:35170)
  • 27. V. Vespri, On the local behaviour of solutions of a certain class of doubly nonlinear parabolic problems, Manuscripta Math. 75 (1992), no. 1, 65-80. MR 1156216 (93d:35071)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K65, 35R35, 76S05

Retrieve articles in all journals with MSC (2000): 35K65, 35R35, 76S05


Additional Information

Carsten Ebmeyer
Affiliation: Mathematisches Seminar, Universität Bonn, Nussallee 15, D-53115 Bonn, Germany
Email: cebmeyer@uni-bonn.de

José Miguel Urbano
Affiliation: Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
Email: jmurb@mat.uc.pt

DOI: https://doi.org/10.1090/S0002-9947-05-03790-6
Keywords: Degenerate parabolic equation, free boundary, finite speed of propagation, porous medium equation
Received by editor(s): November 12, 2002
Received by editor(s) in revised form: November 19, 2003
Published electronically: January 27, 2005
Additional Notes: The second author was supported in part by the Project FCT-POCTI/34471/MAT/2000 and CMUC/FCT
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society