Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Regular domains in homogeneous groups

Authors: Roberto Monti and Daniele Morbidelli
Journal: Trans. Amer. Math. Soc. 357 (2005), 2975-3011
MSC (2000): Primary 43A80
Published electronically: March 25, 2005
MathSciNet review: 2135732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study John, uniform and non-tangentially accessible domains in homogeneous groups of steps 2 and 3. We show that $C^{1,1}$ domains in groups of step 2 are non-tangentially accessible and we give an explicit condition which ensures the John property in groups of step 3.

References [Enhancements On Off] (What's this?)

  • [Be] O. V. Besov, Integral representations of functions in a domain with the flexible horn condition, and imbedding theorems (Russian), Dokl. Akad. Nauk. SSSR 273 (1983), 1294-1297. MR 0731291 (85i:46036)
  • [Bo] B. Bojarski, Remarks on Sobolev imbedding inequalities, in Proc. of the Conference on Complex Analysis (Joensu 1987), 52-68, Lecture Notes in Math. 1351, Springer, 1988. MR 0982072 (90b:46068)
  • [BKL] S. Buckley, P. Koskela, G. Lu, Boman equals John, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995), 91-99, de Gruyter, Berlin, 1996.MR 1427074 (98m:43013)
  • [CG] L. Capogna, N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), 4-5, 403-432.MR 1658616 (2000k:35056)
  • [CGN1] L. Capogna, N. Garofalo, D. M. Nhieu, Examples of uniform and NTA domains in Carnot groups, Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), 103-121, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000. MR 1847513 (2002k:30037)
  • [CGN2] L. Capogna, N. Garofalo, D. M. Nhieu, Properties of harmonic measures in the Dirichlet problem for nilpotent Lie Groups of Heisenberg type, Amer. J. Math. 124 (2002), 273-306. MR 1890994 (2002m:31013)
  • [CT] L. Capogna, P. Tang, Uniform domains and quasiconformal mappings on the Heisenberg group, Manuscripta Math. 86 (1995), no. 3, 267-281.MR 1323792 (96f:30019)
  • [DGN] D. Danielli, N. Garofalo, D. M. Nhieu, Non-doubling Ahlfors measures, perimeter measures and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, preprint.
  • [FF1] F. Ferrari, B. Franchi, A local doubling formula for harmonic measure associated with subelliptic operators, Comm. Partial Differential Equations 28 (2003), 1-60. MR 1974448 (2004g:35050)
  • [FF2] F. Ferrari, B. Franchi, Geometry of the boundary and doubling property of the harmonic measure for Grushin type operators, Rend. Sem. Mat. Univ. Politec. Torino 58 (2002), 281-299. MR 1984194 (2004g:35049)
  • [FS] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, 1982.MR 0657581 (84h:43027)
  • [FLW] B. Franchi, G. Lu, R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier 45 (1995), 577-604. MR 1343563 (96i:46037)
  • [GN1] N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.MR 1404326 (97i:58032)
  • [GN2] N. Garofalo, D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math. 74 (1998), 67-97.MR 1631642 (2000i:46025)
  • [G] A. V. Greshnov, On uniform and NTA-domains on Carnot groups, (Russian) Sibirsk. Mat. Zh. 42 (2001), no. 5, 1018-1035, ii. MR 1861631 (2002h:53048)
  • [HK] P. Haj\lasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 688 (2000). MR 1683160 (2000j:46063)
  • [HH] W. Hansen, H. Hueber, The Dirichlet problem for sub-Laplacians on nilpotent Lie groups--geometric criteria for regularity, Math. Ann. 276 (1987), no. 4, 537-547. MR 0879533 (88g:31017)
  • [J] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523.MR 0850547 (87i:35027)
  • [JK] D. Jerison, C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math. 46 (1982), 80-147.MR 0676988 (84d:31005b)
  • [Joh] F. John, Rotation and strain, Comm. Pure Appl. Math. 4 (1961), 391-414.MR 0138225 (25:1672)
  • [Jon] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. MR 0631089 (83i:30014)
  • [MS] O. Martio, J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1978/1979) 383-401. MR 0565886 (81i:30039)
  • [VSC] N. Th. Varopoulos, L. Saloff Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Univ. Press, 1992. MR 1218884 (95f:43008)
  • [V] J. Väisälä, Uniform domains, Tohoku Math. J. 40 (1988), 101-118. MR 0927080 (89d:30027)
  • [VG] S. K. Vodop'yanov, A. V. Greshnov, On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric, Siberian Math. J. 36 (1995), no. 5, 873-901.MR 1373594 (97j:42010)
  • [W] R. Wittmann, A nontangential limit theorem, Osaka J. Math. 24 (1987), no. 1, 61-76.MR 0881746 (88g:31021)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 43A80

Retrieve articles in all journals with MSC (2000): 43A80

Additional Information

Roberto Monti
Affiliation: Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Belzoni 7, 35131 Padova, Italy

Daniele Morbidelli
Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, 40127 Bologna, Italy

Keywords: John domains, non-tangentially accessible domains, homogeneous groups
Received by editor(s): February 1, 2002
Published electronically: March 25, 2005
Additional Notes: The first author was supported by Trento University, Italy, and Bern University, Switzerland
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society