Some counterexamples to a generalized Saari's conjecture
Author:
Gareth E. Roberts
Journal:
Trans. Amer. Math. Soc. 358 (2006), 251265
MSC (2000):
Primary 70F10, 70F15; Secondary 37J45
Published electronically:
January 21, 2005
MathSciNet review:
2171232
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For the Newtonian body problem, Saari's conjecture states that the only solutions with a constant moment of inertia are relative equilibria, solutions rigidly rotating about their center of mass. We consider the same conjecture applied to Hamiltonian systems with powerlaw potential functions. A family of counterexamples is given in the fivebody problem (including the Newtonian case) where one of the masses is taken to be negative. The conjecture is also shown to be false in the case of the inverse square potential and two kinds of counterexamples are presented. One type includes solutions with collisions, derived analytically, while the other consists of periodic solutions shown to exist using standard variational methods.
 1.
Alain
Albouy, The symmetric central configurations of four equal
masses, Hamiltonian dynamics and celestial mechanics (Seattle, WA,
1995) Contemp. Math., vol. 198, Amer. Math. Soc., Providence, RI,
1996, pp. 131–135. MR 1409157
(97g:70012), http://dx.doi.org/10.1090/conm/198/02494
 2.
Alain
Chenciner, Action minimizing periodic orbits in the Newtonian
𝑛body problem, Celestial mechanics (Evanston, IL, 1999)
Contemp. Math., vol. 292, Amer. Math. Soc., Providence, RI, 2002,
pp. 71–90. MR 1884893
(2004b:70023), http://dx.doi.org/10.1090/conm/292/04917
 3.
Alain
Chenciner, Some facts and more questions about the Eight,
Topological methods, variational methods and their applications (Taiyuan,
2002) World Sci. Publ., River Edge, NJ, 2003, pp. 77–88. MR 2010643
(2004m:70012)
 4.
William
B. Gordon, Conservative dynamical systems
involving strong forces, Trans. Amer. Math.
Soc. 204 (1975),
113–135. MR 0377983
(51 #14152), http://dx.doi.org/10.1090/S00029947197503779831
 5.
C. Jacobi, Vorlesungen über dynamik, Reimer Publisher, Berlin, 1866.
 6.
C. McCord, Saari's conjecture for the planar threebody problem with equal masses, preprint, October 2002.
 7.
R. Moeckel, A computerassisted proof of Saari's conjecture for the planar threebody problem, preprint, July 2003.
 8.
Richard
Moeckel, On central configurations, Math. Z.
205 (1990), no. 4, 499–517. MR 1082871
(92b:70012), http://dx.doi.org/10.1007/BF02571259
 9.
Richard
Moeckel, Relative equilibria of the fourbody problem, Ergodic
Theory Dynam. Systems 5 (1985), no. 3, 417–435.
MR 805839
(87b:70011), http://dx.doi.org/10.1017/S0143385700003047
 10.
Richard
Montgomery, Action spectrum and collisions in the planar threebody
problem, Celestial mechanics (Evanston, IL, 1999) Contemp. Math.,
vol. 292, Amer. Math. Soc., Providence, RI, 2002,
pp. 173–184. MR 1884899
(2003a:70012), http://dx.doi.org/10.1090/conm/292/04923
 11.
Richard
Montgomery, The 𝑁body problem, the braid group, and
actionminimizing periodic solutions, Nonlinearity 11
(1998), no. 2, 363–376. MR 1610784
(99a:70019), http://dx.doi.org/10.1088/09517715/11/2/011
 12.
H. Poincaré, Sur les solutions périodiques et le principe de moindre action, Comptes Rendus 123 (1896), 915918.
 13.
Gareth
E. Roberts, A continuum of relative equilibria in the fivebody
problem, Phys. D 127 (1999), no. 34,
141–145. MR 1669486
(2000c:70010), http://dx.doi.org/10.1016/S01672789(98)003157
 14.
D. Saari, On bounded solutions of the body problem, Periodic Orbits, Stability and Resonances, G. Giacaglia ed., D. Riedel, Dordrecht (1970), 7681.
 15.
Donald
G. Saari, On the role and the properties of 𝑛body central
configurations, Proceedings of the Sixth Conference on Mathematical
Methods in Celestial Mechanics (Math. Forschungsinst., Oberwolfach, 1978),
Part I, 1980, pp. 9–20. MR 564603
(81a:70016), http://dx.doi.org/10.1007/BF01230241
 16.
Steve
Smale, Mathematical problems for the next century, Math.
Intelligencer 20 (1998), no. 2, 7–15. MR 1631413
(99h:01033), http://dx.doi.org/10.1007/BF03025291
 17.
Aurel
Wintner, The Analytical Foundations of Celestial Mechanics,
Princeton Mathematical Series, v. 5, Princeton University Press, Princeton,
N. J., 1941. MR
0005824 (3,215b)
 1.
 A. Albouy, The symmetric central configurations of four equal masses, Hamiltonian dynamics and celestial mechanics (Seattle, WA, 1995), Contemp. Math., vol. 198, Amer. Math. Soc., Providence, RI, 1996, pp. 131135. MR 1409157 (97g:70012)
 2.
 A. Chenciner, Action minimizing periodic orbits in the Newtonian body problem, Celestial mechanics (Evanston, IL, 1999), Contemp. Math., vol. 292, Amer. Math. Soc., Providence, RI, 2002, pp. 7190. MR 1884893 (2004b:70023)
 3.
 , Some facts and more questions about the Eight, Topological methods, variational methods and their applications (Taiyuan, 2002), World Sci. Publishing, River Edge, NJ, 2003, pp. 7788. MR 2010643
 4.
 W. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113135. MR 0377983 (51:14152)
 5.
 C. Jacobi, Vorlesungen über dynamik, Reimer Publisher, Berlin, 1866.
 6.
 C. McCord, Saari's conjecture for the planar threebody problem with equal masses, preprint, October 2002.
 7.
 R. Moeckel, A computerassisted proof of Saari's conjecture for the planar threebody problem, preprint, July 2003.
 8.
 , On central configurations, Math. Z. 205 (1990), no. 4, 499517. MR 1082871 (92b:70012)
 9.
 , Relative equilibria of the fourbody problem, Erg. Th. & Dyn. Sys. 5 (1985), no. 3, 417435. MR 0805839 (87b:70011)
 10.
 R. Montgomery, Action spectrum and collisions in the planar threebody problem, Celestial mechanics (Evanston, IL, 1999), Contemp. Math., vol. 292, Amer. Math. Soc., Providence, RI, 2002, pp. 173184. MR 1884899 (2003a:70012)
 11.
 , The body problem, the braid group, and actionminimizing periodic solutions, Nonlinearity 11 (1998), no. 2, 363376.MR 1610784 (99a:70019)
 12.
 H. Poincaré, Sur les solutions périodiques et le principe de moindre action, Comptes Rendus 123 (1896), 915918.
 13.
 G. Roberts, A continuum of relative equilibria in the 5body problem, Phys. D 127 (1999), no. 34, 141145. MR 1669486 (2000c:70010)
 14.
 D. Saari, On bounded solutions of the body problem, Periodic Orbits, Stability and Resonances, G. Giacaglia ed., D. Riedel, Dordrecht (1970), 7681.
 15.
 , On the role and the properties of body central configurations, Celestial Mech. 21 (1980), no. 1, 920. MR 0564603 (81a:70016)
 16.
 S. Smale, Mathematical Problems for the Next Century, Math. Intelligencer 20 (1998), no. 2, 715. MR 1631413 (99h:01033)
 17.
 A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Math. Series 5, Princeton University Press, Princeton, NJ, 1941.MR 0005824 (3:215b)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
70F10,
70F15,
37J45
Retrieve articles in all journals
with MSC (2000):
70F10,
70F15,
37J45
Additional Information
Gareth E. Roberts
Affiliation:
Department of Mathematics and Computer Science, 1 College Street, College of the Holy Cross, Worcester, Massachusetts 01610
Email:
groberts@radius.holycross.edu
DOI:
http://dx.doi.org/10.1090/S0002994705036974
PII:
S 00029947(05)036974
Keywords:
Saari's conjecture,
$n$body problems,
relative equilibria,
Hamiltonian systems
Received by editor(s):
September 12, 2003
Received by editor(s) in revised form:
February 9, 2004
Published electronically:
January 21, 2005
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
