Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equivariant Gysin maps and pulling back fixed points


Authors: Bernhard Hanke and Volker Puppe
Journal: Trans. Amer. Math. Soc. 358 (2006), 687-702
MSC (2000): Primary 55N20, 55N91, 57S17; Secondary 57N65
DOI: https://doi.org/10.1090/S0002-9947-05-03634-2
Published electronically: March 10, 2005
MathSciNet review: 2177036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a new approach to the pulling back fixed points theorem of W. Browder and use it in order to prove various generalizations of this result.


References [Enhancements On Off] (What's this?)

  • 1. C. Allday, V. Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics 32 (1993), CUP. MR 94g:55009
  • 2. G.E. Bredon, Fixed point sets of actions on Poincaré duality spaces, Topology 12 (1973), 159-175. MR 48:9708
  • 3. W. Browder, Pulling back fixed points, Inv. Math. 87 (1987), 331-342. MR 88a:57070
  • 4. T. tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8 (1987), de Gruyter. MR 89c:57048
  • 5. T. tom Dieck, Kobordismentheorie klassifizierender Räume und Transformationsgruppen, Math. Z. 126 (1972), 31-39. MR 45:7744
  • 6. E. Dyer, Cohomology theories, Benjamin, New York (1969). MR 42:3780
  • 7. J. Ewing, R. Stong, Group actions having one fixed point, Math. Z. 191 (1986), 159-164. MR 87j:57024
  • 8. H. Ibisch, Microfibrés normeaux équivariants, C. R. Acad. Sc. Paris Sér A t. 279 (1974), 155-156. MR 53:9235
  • 9. J. Jaworowski, An equivariant extension theorem and $G$-retracts with a finite structure, Manuscripta Math. 35, no. 3, (1981), 323-329. MR 83a:57052
  • 10. K. Kawakubo, Equivariant Riemann-Roch theorems, localization and formal group law, Osaka J. Math. 17 (1980), 531-571.MR 81j:57020
  • 11. J. M. Kister, Microbundles are fibre bundles, Ann. Math. 80 (1964), 190-199. MR 31:5216
  • 12. J. Milnor, Microbundles I, Topology 3, suppl. 1 (1964), 53-81. MR 28:4553b
  • 13. I. Madsen, R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies 92 (1979), Princeton University Press. MR 81b:57014
  • 14. S. Mardesic, J. Segal, Shape theory, North Holland (1982). MR 84b:55020
  • 15. G.D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432-446. MR 19:291c
  • 16. Y. Rudyak, On Thom spectra, orientability and cobordism, Springer Monographs in Mathematics, Springer Verlag (1998). MR 99f:55001
  • 17. R. Switzer, Algebraic topology - homotopy and homology, Grundlehren 212 (1975), Springer Verlag. MR 52:6695

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55N20, 55N91, 57S17, 57N65

Retrieve articles in all journals with MSC (2000): 55N20, 55N91, 57S17, 57N65


Additional Information

Bernhard Hanke
Affiliation: Mathematisches Institut, Universität München, Theresienstr. 39, 80333 München, Germany
Email: Bernhard.Hanke@mathematik.uni-muenchen.de

Volker Puppe
Affiliation: Fachbereich für Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany
Email: Volker.Puppe@uni-konstanz.de

DOI: https://doi.org/10.1090/S0002-9947-05-03634-2
Keywords: Group action, generalized homology, topological manifold
Received by editor(s): October 24, 2003
Received by editor(s) in revised form: February 19, 2004
Published electronically: March 10, 2005
Additional Notes: The first author is a member of the \sl European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme.
Dedicated: Dedicated to William Browder on the occasion of his 70th birthday
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society