Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation formulae and inequalities for solutions of a class of second order partial differential equations


Authors: Lorenzo D'Ambrosio, Enzo Mitidieri and Stanislav I. Pohozaev
Journal: Trans. Amer. Math. Soc. 358 (2006), 893-910
MSC (2000): Primary 35H10, 35C15, 26D10
DOI: https://doi.org/10.1090/S0002-9947-05-03717-7
Published electronically: April 22, 2005
MathSciNet review: 2177044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $L$ be a possibly degenerate second order differential operator and let $\Gamma_\eta=d^{2-Q}$ be its fundamental solution at $\eta$; here $d$ is a suitable distance. In this paper we study necessary and sufficient conditions for the weak solutions of $-Lu\ge f(\xi,u)\ge 0$ on ${\mathbb{R}}^N$ to satisfy the representation formula

\begin{displaymath}(\mbox R)\qquad\qquad\qquad\qquad\qquad u(\eta)\ge\int_{\mat... ...amma_\eta f(\xi,u) \,d\xi.\qquad\qquad\qquad\qquad\qquad\qquad \end{displaymath}

We prove that (R) holds provided $f(\xi,\cdot)$ is superlinear, without any assumption on the behavior of $u$ at infinity. On the other hand, if $u$ satisfies the condition

\begin{displaymath}\liminf_{R\rightarrow\infty} {-\int}_{R\le d(\xi)\le 2R}\vert u(\xi)\vert d\xi =0,\end{displaymath}

then (R) holds with no growth assumptions on $f(\xi,\cdot)$.


References [Enhancements On Off] (What's this?)

  • 1. W. BECKNER, On the Grushin Operator and Hyperbolic Symmetry, Proc. Am. Math. Soc. 129 (2001), 1233-1246. MR 1709740 (2001g:35009)
  • 2. A. BONFIGLIOLI, E. LANCONELLI, F. UGUZZONI, Uniform Gaussian Estimates of the Fundamental Solutions for Heat Operators on Carnot Groups, Adv. Differential Equations 7 (2002), 1153-1192. MR 1919700 (2003f:35054)
  • 3. H. BREZIS, S. KAMIN, Sublinear Elliptic Equations in $\mathbb{R}^N$, Manuscripta Math. 74 (1992), 87-106. MR 1141779 (93f:35062)
  • 4. L. D'AMBROSIO, S. LUCENTE, Nonlinear Liouville theorems for the Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511-541. MR 1998967 (2004g:35241)
  • 5. G.B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv för Mat. 13 (1975), 161-207. MR 0494315 (58:13215)
  • 6. G.B. FOLLAND, E.M. STEIN, Hardy spaces on Homogeneous Groups, Math. Notes, vol. 28, Princeton Univ. Press, Princeton, 1982. MR 0657581 (84h:43027)
  • 7. G.B. FOLLAND, A course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995. MR 1397028 (98c:43001)
  • 8. L. GALLARDO, Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, Lecture Notes in Math. 928 (1982), 96-120. MR 0669065 (84a:60089)
  • 9. P. HAJLASZ, P. KOSKELA, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145, no. 688 (2000), x + 101 pp. MR 1683160 (2000j:46063)
  • 10. J. HEINONEN, Calculus on Carnot Groups, in Fall School in Analysis (Jyväskylä, 1994), vol. 68, Ber. Univ. Jyväskylä Math. Inst. Jyväskylä, 1995, 1-31. MR 1351042 (96j:22015)
  • 11. E. MITIDIERI, S.I. POHOZAEV, A Priori Estimates of Solutions to Nonlinear Partial Differential Equations and Inequalities and Applications, Proc. Steklov Institute of Mathematics 234 (2001), 1-375. MR 1879326
  • 12. E. MITIDIERI, S.I. POHOZAEV, Positivity property of solutions of some elliptic inequalities on $\mathbb{R}^n$, Doklady Math. 68 (2003), 339-344.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35H10, 35C15, 26D10

Retrieve articles in all journals with MSC (2000): 35H10, 35C15, 26D10


Additional Information

Lorenzo D'Ambrosio
Affiliation: Dipartimento di Matematica, via E. Orabona 4, Università degli Studi di Bari, I-70125 Bari, Italy
Email: dambros@dm.uniba.it

Enzo Mitidieri
Affiliation: Dipartimento di Scienze Matematiche, via A. Valerio 12/1, Università degli Studi di Trieste, I-34127 Trieste, Italy
Email: mitidier@units.it

Stanislav I. Pohozaev
Affiliation: Steklov Institute of Mathematics, Gubkina Str. 8, 117966 Moscow, Russia
Email: pohozaev@mi.ras.ru

DOI: https://doi.org/10.1090/S0002-9947-05-03717-7
Received by editor(s): April 19, 2004
Published electronically: April 22, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society