Invariants, Boolean algebras and ACA

Author:
Richard A. Shore

Journal:
Trans. Amer. Math. Soc. **358** (2006), 989-1014

MSC (2000):
Primary 03B25, 03B30, 03C57, 03D28, 03D35, 03D45, 03F35, 06E05

Published electronically:
April 13, 2005

MathSciNet review:
2187642

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The sentences asserting the existence of invariants for mathematical structures are usually third order ones. We develop a general approach to analyzing the strength of such statements in second order arithmetic in the spirit of reverse mathematics. We discuss a number of simple examples that are equivalent to ACA. Our major results are that the existence of elementary equivalence invariants for Boolean algebras and isomorphism invariants for dense Boolean algebras are both of the same strength as ACA. This system corresponds to the assertion that (the arithmetic jump of ) exists for every set . These are essentially the first theorems known to be of this proof theoretic strength. The proof begins with an analogous result about these invariants on recursive (dense) Boolean algebras coding .

**[1987]**Andreas R. Blass, Jeffry L. Hirst, and Stephen G. Simpson,*Logical analysis of some theorems of combinatorics and topological dynamics*, Logic and combinatorics (Arcata, Calif., 1985) Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 125–156. MR**891245**, 10.1090/conm/065/891245**[2005]**Csima, B., Montalban, A. and Shore, R.A., Boolean algebras, Tarski invariants and index sets,*Notre Dame Journal of Formal Logic*, to appear.**[1977]**C. C. Chang and H. J. Keisler,*Model theory*, 2nd ed., North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Logic and the Foundations of Mathematics, 73. MR**0532927****[1964]**Ju. L. Eršov,*Decidability of the elementary theory of relatively complemented lattices and of the theory of filters*, Algebra i Logika Sem.**3**(1964), no. 3, 17–38 (Russian). MR**0180490****[1998]**Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek (eds.),*Handbook of recursive mathematics. Vol. 1*, Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998. Recursive model theory. MR**1673617**

Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek (eds.),*Handbook of recursive mathematics. Vol. 2*, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998. Recursive algebra, analysis and combinatorics. MR**1673582****[1983]**Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith,*Countable algebra and set existence axioms*, Ann. Pure Appl. Logic**25**(1983), no. 2, 141–181. MR**725732**, 10.1016/0168-0072(83)90012-X**[1997]**Sergei S. Goncharov,*Countable Boolean algebras and decidability*, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1997. MR**1444819****[1988]**John Doner and Wilfrid Hodges,*Alfred Tarski and decidable theories*, J. Symbolic Logic**53**(1988), no. 1, 20–35. MR**929372**, 10.2307/2274425**[1972]**R. Björn Jensen,*The fine structure of the constructible hierarchy*, Ann. Math. Logic**4**(1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR**0309729****[1989]**Sabine Koppelberg,*Handbook of Boolean algebras. Vol. 1*, North-Holland Publishing Co., Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet. MR**991565**

J. Donald Monk and Robert Bonnet (eds.),*Handbook of Boolean algebras. Vol. 2*, North-Holland Publishing Co., Amsterdam, 1989. MR**991595**

J. Donald Monk and Robert Bonnet (eds.),*Handbook of Boolean algebras. Vol. 3*, North-Holland Publishing Co., Amsterdam, 1989. MR**991607****[1982]**A. S. Morozov,*Strong constructivizability of countable saturated Boolean algebras*, Algebra i Logika**21**(1982), no. 2, 193–203 (Russian). MR**700992****[1999]**Stephen G. Simpson,*Subsystems of second order arithmetic*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999. MR**1723993****[1987]**Robert I. Soare,*Recursively enumerable sets and degrees*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets. MR**882921****[1949]**Tarski, A., Arithmetical classes and types of Boolean algebras,*Bulletin of the American Mathematical Society***55**, 63.**[1954]**Vaught, R. L.,*Topics in the Theory of Arithmetical Classes and Boolean Algebras*, Ph.D. Thesis, University of California, Berkeley.**[2000]**White, W. M.,*Characterizations for Computable Structures*, Ph.D. Thesis, Cornell University.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
03B25,
03B30,
03C57,
03D28,
03D35,
03D45,
03F35,
06E05

Retrieve articles in all journals with MSC (2000): 03B25, 03B30, 03C57, 03D28, 03D35, 03D45, 03F35, 06E05

Additional Information

**Richard A. Shore**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853

Email:
shore@math.cornell.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03802-X

Received by editor(s):
March 22, 2004

Published electronically:
April 13, 2005

Additional Notes:
The author was partially supported by NSF Grant DMS-0100035.

Article copyright:
© Copyright 2005
Richard A. Shore