Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Contact reduction and groupoid actions

Authors: Marco Zambon and Chenchang Zhu
Journal: Trans. Amer. Math. Soc. 358 (2006), 1365-1401
MSC (2000): Primary 53D10, 53D20, 58H05
Published electronically: June 21, 2005
MathSciNet review: 2187657
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new method to perform reduction of contact manifolds that extends Willett's and Albert's results. To carry out our reduction procedure all we need is a complete Jacobi map $J:M \rightarrow \Gamma_0$ from a contact manifold to a Jacobi manifold. This naturally generates the action of the contact groupoid of $\Gamma_0$ on $M$, and we show that the quotients of fibers $J^{-1}(x)$ by suitable Lie subgroups $\Gamma_x $ are either contact or locally conformal symplectic manifolds with structures induced by the one on $M$.

We show that Willett's reduced spaces are prequantizations of our reduced spaces; hence the former are completely determined by the latter. Since a symplectic manifold is prequantizable iff the symplectic form is integral, this explains why Willett's reduction can be performed only at distinguished points. As an application we obtain Kostant's prequantizations of coadjoint orbits. Finally we present several examples where we obtain classical contact manifolds as reduced spaces.

References [Enhancements On Off] (What's this?)

  • [Alb89] Claude Albert, Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989), no. 4, 627-649. MR 91k:58033
  • [BCWZar] Henriques Bursztyn, Marius Crainic, Alan Weinstein, and Chenchang Zhu, Integration of twisted Dirac brackets, Duke. Math. J. 123 (2004), no. 3, 549-607. MR 2068969
  • [Bla02] David E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 2002m:53120
  • [BtD95] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1995, Translated from the German manuscript, Corrected reprint of the 1985 translation. MR 97i:22005
  • [CdS01] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 2002i:53105
  • [CdSW99] Ana Cannas da Silva and Alan Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, vol. 10, American Mathematical Society, Providence, RI, 1999. MR 2001m:58013
  • [CDW87] A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, Lyon, 1987, pp. i-ii, 1-62. MR 90g:58033
  • [CZ] Marius Crainic and Chenchang Zhu, Integrability of Jacobi structures, arXiv:math.DG/0403268.
  • [Daz97] Pierre Dazord, Sur l'intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math. 121 (1997), no. 6, 423-462. MR 99g:58057
  • [dLLMP03] Manuel de León, Belén López, Juan C. Marrero, and Edith Padrón, On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys. 44 (2003), no. 4, 507-522. MR 2003m:53145
  • [GGK02] Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002, Appendix J by Maxim Braverman. MR 2003m:53149
  • [Kir76] A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-75. MR 0438390 (55:11304a)
  • [Kos70] Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 87-208. Lecture Notes in Math., Vol. 170. MR 45:3638
  • [KSB93] Yvan Kerbrat and Zoubida Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 1, 81-86. MR 94g:58072
  • [Lic78] André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), no. 4, 453-488. MR 80m:58016
  • [MM03] I. Moerdijk and J. Mrcun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261
  • [MW74] Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121-130. MR 53:6633
  • [MW88] Kentaro Mikami and Alan Weinstein, Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), no. 1, 121-140. MR 90c:58060
  • [SW99] Richard Schoen and Jon Wolfson, Minimizing volume among Lagrangian submanifolds, Proceedings of Symposia in Pure Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1999. MR 1662755 (99k:53130)
  • [Vai94] Izu Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, vol. 118, Birkhäuser Verlag, Basel, 1994. MR 95h:58057
  • [Wil02] Christopher Willett, Contact reduction, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4245-4260 (electronic). MR 2003m:53152
  • [Xu91] Ping Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys. 142 (1991), no. 3, 493-509. MR 93a:58069

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D10, 53D20, 58H05

Retrieve articles in all journals with MSC (2000): 53D10, 53D20, 58H05

Additional Information

Marco Zambon
Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
Address at time of publication: Institut für Mathematik, Universität Zürich-Irchel, 8057 Zürich, Switzerland

Chenchang Zhu
Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
Address at time of publication: D-MATH, ETH-Zentrum, CH-8092 Zürich, Switzerland

Received by editor(s): May 25, 2004
Published electronically: June 21, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society