Algebra of dimension theory

Author:
Jerzy Dydak

Journal:
Trans. Amer. Math. Soc. **358** (2006), 1537-1561

MSC (2000):
Primary 54F45, 55M10, 55N99, 55Q40, 55P20

Published electronically:
April 22, 2005

MathSciNet review:
2186985

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension algebra of graded groups is introduced. With the help of known geometric results of extension theory, this algebra induces all known results of the cohomological dimension theory. Elements of the algebra are equivalence classes of graded groups . There are two geometric interpretations of these equivalence classes: 1) For pointed CW complexes and , if and only if the infinite symmetric products and are of the same extension type (i.e., iff for all compact ). 2) For pointed compact spaces and , if and only if and are of the same dimension type (i.e., for all Abelian groups ).

Dranishnikov's version of the Hurewicz Theorem in extension theory becomes for all simply connected .

The concept of cohomological dimension of a pointed compact space with respect to a graded group is introduced. It turns out iff for all . If and are two positive graded groups, then if and only if for all compact .

**[Git]**Marcelo Aguilar, Samuel Gitler, and Carlos Prieto,*Algebraic topology from a homotopical viewpoint*, Universitext, Springer-Verlag, New York, 2002. Translated from the Spanish by Stephen Bruce Sontz. MR**1908260****[BK]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573****[CD]**M. Cencelj and A. N. Dranishnikov,*Extension of maps to nilpotent spaces. II*, Topology Appl.**124**(2002), no. 1, 77–83. MR**1926136**, 10.1016/S0166-8641(01)00239-5**[D]**A. N. Dranishnikov,*On intersection of compacta in Euclidean space. II*, Proc. Amer. Math. Soc.**113**(1991), no. 4, 1149–1154. MR**1060721**, 10.1090/S0002-9939-1991-1060721-1**[D]**A. N. Dranishnikov,*On the mapping intersection problem*, Pacific J. Math.**173**(1996), no. 2, 403–412. MR**1394397****[D]**A. N. Dranishnikov,*Extension of mappings into CW-complexes*, Mat. Sb.**182**(1991), no. 9, 1300–1310 (Russian); English transl., Math. USSR-Sb.**74**(1993), no. 1, 47–56. MR**1133570****[D]**A. N. Dranishnikov,*On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space*, Trans. Amer. Math. Soc.**352**(2000), no. 12, 5599–5618. MR**1781276**, 10.1090/S0002-9947-00-02684-2**[D]**A. N. Dranishnikov,*Basic elements of the cohomological dimension theory of compact metric spaces*(1999).**[D-D]**A. Dranishnikov and J. Dydak,*Extension dimension and extension types*, Tr. Mat. Inst. Steklova**212**(1996), no. Otobrazh. i Razmer., 61–94; English transl., Proc. Steklov Inst. Math.**1 (212)**(1996), 55–88. MR**1635023****[D-D]**Alexander Dranishnikov and Jerzy Dydak,*Extension theory of separable metrizable spaces with applications to dimension theory*, Trans. Amer. Math. Soc.**353**(2001), no. 1, 133–156. MR**1694287**, 10.1090/S0002-9947-00-02536-8**[Dy]**Jerzy Dydak,*Cohomological dimension and metrizable spaces. II*, Trans. Amer. Math. Soc.**348**(1996), no. 4, 1647–1661. MR**1333390**, 10.1090/S0002-9947-96-01536-X**[Dy]**Jerzy Dydak,*Realizing dimension functions via homology*, Topology Appl.**65**(1995), no. 1, 1–7. MR**1354376**, 10.1016/0166-8641(94)00105-C**[Dy]**J. Dydak,*Extension theory of infinite symmetric products*, Fundamenta Mathematicae, to appear.**[HMR]**Peter Hilton, Guido Mislin, and Joe Roitberg,*Localization of nilpotent groups and spaces*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematics Studies, No. 15; Notas de Matemática, No. 55. [Notes on Mathematics, No. 55]. MR**0478146****[Krull1931]**W. Krull,*Allgemeine Bewertungstheorie*, J.Reine Angew. Math 167 (1931), 160-196.**[K]**V. I. Kuz′minov,*Homological dimension theory*, Uspehi Mat. Nauk**23**(1968), no. 5 (143), 3–49 (Russian). MR**0240813****[N]**Joseph Neisendorfer,*Primary homotopy theory*, Mem. Amer. Math. Soc.**25**(1980), no. 232, iv+67. MR**567801**, 10.1090/memo/0232**[O]**Wojciech Olszewski,*Completion theorem for cohomological dimensions*, Proc. Amer. Math. Soc.**123**(1995), no. 7, 2261–2264. MR**1307554**, 10.1090/S0002-9939-1995-1307554-X**[S]**E. V. Shchepin,*Arithmetic of dimension theory*, Uspekhi Mat. Nauk**53**(1998), no. 5(323), 115–212 (Russian); English transl., Russian Math. Surveys**53**(1998), no. 5, 975–1069. MR**1691185**, 10.1070/rm1998v053n05ABEH000072**[Sp]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112****[Su]**Dennis Sullivan,*Geometric topology. Part I*, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR**0494074**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
54F45,
55M10,
55N99,
55Q40,
55P20

Retrieve articles in all journals with MSC (2000): 54F45, 55M10, 55N99, 55Q40, 55P20

Additional Information

**Jerzy Dydak**

Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300

Email:
dydak@math.utk.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03690-1

Keywords:
Cohomological dimension,
dimension,
Eilenberg-Mac\,
Lane complexes,
graded groups,
infinite symmetric products,
Moore spaces

Received by editor(s):
August 14, 2001

Received by editor(s) in revised form:
April 12, 2004

Published electronically:
April 22, 2005

Additional Notes:
This research was supported in part by grant DMS-0072356 from the National Science Foundation

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.