Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bicyclic algebras of prime exponent over function fields


Authors: Boris È. Kunyavskii, Louis H. Rowen, Sergey V. Tikhonov and Vyacheslav I. Yanchevskii
Journal: Trans. Amer. Math. Soc. 358 (2006), 2579-2610
MSC (2000): Primary 16K20
DOI: https://doi.org/10.1090/S0002-9947-05-03772-4
Published electronically: October 21, 2005
MathSciNet review: 2204045
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine some properties of bicyclic algebras, i.e. the tensor product of two cyclic algebras, defined over a purely transcendental function field in one variable. We focus on the following problem: When does the set of local invariants of such an algebra coincide with the set of local invariants of some cyclic algebra? Although we show this is not always the case, we determine when it happens for the case where all degeneration points are defined over the ground field. Our main tool is Faddeev's theory. We also study a geometric counterpart of this problem (pencils of Severi-Brauer varieties with prescribed degeneration data).


References [Enhancements On Off] (What's this?)

  • 1. A. A. Albert, On the Wedderburn norm condition for cyclic algebras, Bull. Amer. Math. Soc. 37 (1931), 301-312.
  • 2. Algebraic Number Theory (J. W. S. Cassels and A. Fröhlich, Eds.), Academic Press, London-New York, 1967. MR 0215665 (35:6500)
  • 3. M. Artin, Left ideals in maximal orders, ``Brauer Groups in Ring Theory and Algebraic Geometry'', Lecture Notes Math. 917 (1982), 182-193. MR 0657429 (83j:16009)
  • 4. M. Auslander and A. Brumer, Brauer groups of discrete valuation rings, Nederl. Akad. Wetensch. Proc. Ser. A 71 (1968), 286-296. MR 0228471 (37:4051)
  • 5. S. Bloch, Torsion algebraic cycles, $ K_2$, and Brauer groups of function fields, ``Groupe de Brauer'', Lecture Notes Math. 844 (1981), 75-102. MR 0611866 (82k:14018)
  • 6. E. S. Brussel, An arithmetic obstruction to division algebra decomposability, Proc. Amer. Math. Soc. 128 (2000), 2281-2285. MR 1662237 (2000k:16018)
  • 7. J.-L. Colliot-Thélène (with an appendix by O. Gabber), Exposant et indice d'algèbres centrales simples non ramifiées, Enseign. Math. 48 (2002), 127-146. MR 1923420 (2003j:16023)
  • 8. J.-L. Colliot-Thélène and J.-J. Sansuc, On the Chow group of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), 421-447. MR 0620258 (83e:14007)
  • 9. J.-L. Colliot-Thélène and Sir P. Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49-112. MR 1285781 (95h:11060)
  • 10. R. Elman and T. Y. Lam, Quadratic forms and the $ u$-invariant, II, Invent. Math. 21 (1973), 125-137. MR 0417053 (54:5114)
  • 11. D. K. Faddeev, Simple algebras over a function field in one variable, Proc. Steklov Inst. 38 (1951), 321-344; English transl. in AMS Transl. 3 (1956), 15-38. MR 0077505 (17:1046e)
  • 12. B. Fein and M. Schacher, Ulm invariant of the Brauer group of a field, Math. Z. 154 (1977), 41-50. MR 0457410 (56:15615)
  • 13. B. Fein and M. Schacher, Brauer groups and character groups of function fields, J. Algebra 61 (1979), 249-255. MR 0554861 (81c:12036)
  • 14. T. J. Ford, Division algebras that ramify along a singular plane cubic curve, New York J. Math. 1 (1995), 178-183. MR 1348596 (96i:12002)
  • 15. E. Frossard, Fibres dégénérées des schémas de Severi-Brauer d'ordres, J. Algebra 198 (1997), 362-387. MR 1489903 (99b:14006)
  • 16. V. I. Iskovskih, Rational surfaces with a pencil of rational curves, Mat. Sbornik 74 (116) (1967), 608-638; English transl. in Math. USSR Sb. 3 (1967), 563-587. MR 0220734 (36:3786)
  • 17. V. I. Iskovskih, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 19-43; English transl. in Math. USSR Izv. 14 (1980), 17-39. MR 0525940 (80m:14021)
  • 18. B. Jacob, Division algebras which only ramify along a hyperelliptic curve in $ {\mathbb{P}}^2$, J. Algebra 242 (2001), 720-728. MR 1848967 (2002f:16042)
  • 19. B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179. MR 1031915 (91d:12006)
  • 20. A. Kresch, Hodge-theoretic obstruction to the existence of quaternion algebras, Bull. London Math. Soc. 35 (2003), 109-116. MR 1934439 (2004c:16029)
  • 21. B. È. Kunyavski{\u{\i\/}}\kern.15em, A. N. Skorobogatov, and M. A. Tsfasman, Del Pezzo surfaces of degree four, Mem. Soc. Math. France, no. 37, Suppl. au Bull. Soc. Math. France 117 (1989), 1-113. MR 1016354 (90k:14035)
  • 22. B. È. Kunyavski{\u{\i\/}}\kern.15emand M. A. Tsfasman, Zero-cycles on rational surfaces and Néron-Severi tori, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 631-654; English transl. in Math. USSR Izv. 24 (1985), 583-603. MR 0747255 (86f:14004)
  • 23. T. Y. Lam, Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass., 1973. MR 0396410 (53:277)
  • 24. S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827. MR 0065218 (16:398d)
  • 25. Yu. I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic, Nauka, Moscow, 1972; English transl., 2nd ed., North-Holland, Amsterdam, 1986. MR 0833513 (87d:11037)
  • 26. P. Morandi, The henselization of a valued division algebra, J. Algebra 122 (1989), 232-243. MR 0994945 (90h:12007)
  • 27. U. Rehmann, S. V. Tikhonov, and V. I. Yanchevskii, Two-torsion of the Brauer groups of hyperelliptic curves and unramified algebras over their function fields, Comm. Algebra 29 (2001), 3971-3987. MR 1857024 (2002h:14030)
  • 28. S. Rosset and J. Tate, A reciprocity law for $ K_2$-traces, Comment. Math. Helv. 58 (1983), 38-47. MR 0699005 (85b:11105)
  • 29. D. Saltman, Division algebras over $ p$-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25-47; 13 (1998), 125-129. MR 1462850 (98d:16032)
  • 30. J.-P. Serre, Corps locaux, 3ème éd., Hermann, Paris, 1968. MR 0354618 (50:7096)
  • 31. J.-P. Serre, Cohomologie galoisienne, 5ème éd., Lecture Notes Math. 5, Springer-Verlag, Berlin et al., 1994. MR 1324577 (96b:12010)
  • 32. S. V. Tikhonov and V. I. Yanchevski{\u{\i\/}}\kern.15em, Unramified algebras of exponent $ 2$ over function fields of split hyperelliptic curves, Dokl. Nats. Akad. Nauk Belarusi 45 (2001), no. 1, 42-45. MR 1850029
  • 33. S. V. Tikhonov and V. I. Yanchevski{\u{\i\/}}\kern.15em, Two-torsion of the unramified Brauer group of function fields of split hyperelliptic curves, Dokl. Nats. Akad. Nauk Belarusi 45 (2001), no. 3, 5-6. MR 1890418
  • 34. M. Van den Bergh, Division algebras on $ {\mathbb{P}}^2$ of odd index ramified along a smooth elliptic curve are cyclic, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 43-53. MR 1601190 (99d:16021)
  • 35. E. Witt, Schiefkörper über diskret bewerteten Körpern, J. Reine Angew. Math. 176 (1936), 153-156.
  • 36. V. I. Yanchevski{\u{\i\/}}\kern.15emand G. L. Margolin, Brauer groups of local hyperelliptic curves with good reduction, Algebra i Analiz 7 (1995), no. 6, 227-249; 8 (1996), $ n^{\circ } 1$, 237; English transl. in St. Petersburg Math. J. 7 (1996), 1033-1048. MR 1381984 (97c:11066a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16K20

Retrieve articles in all journals with MSC (2000): 16K20


Additional Information

Boris È. Kunyavskii
Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
Email: kunyav@macs.biu.ac.il

Louis H. Rowen
Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
Email: rowen@macs.biu.ac.il

Sergey V. Tikhonov
Affiliation: Institute of Mathematics of the National Academy of Sciences of Belarus, ul. Surganova 11, 220072 Minsk, Belarus
Email: tsv@im.bas-net.by

Vyacheslav I. Yanchevskii
Affiliation: Institute of Mathematics of the National Academy of Sciences of Belarus, ul. Surganova 11, 220072 Minsk, Belarus
Email: yanch@im.bas-net.by

DOI: https://doi.org/10.1090/S0002-9947-05-03772-4
Received by editor(s): November 5, 2002
Received by editor(s) in revised form: June 21, 2004
Published electronically: October 21, 2005
Additional Notes: This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities — Center of Excellence Program and by RTN Network HPRN-CT-2002-00287.
The first author was partially supported by the Ministry of Absorption (Israel), the Minerva Foundation through the Emmy Noether Research Institute of Mathematics, and INTAS 00-566.
The third and the fourth authors were partially supported by the Fundamental Research Foundation of Belarus, TMR ERB FMRX CT-97-0107, and INTAS 99-081.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society