Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Dynamical forcing of circular groups


Author: Danny Calegari
Journal: Trans. Amer. Math. Soc. 358 (2006), 3473-3491
MSC (2000): Primary 58D05; Secondary 57S99
Published electronically: June 10, 2005
MathSciNet review: 2218985
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce and study the notion of dynamical forcing. Basically, we develop a toolkit of techniques to produce finitely presented groups which can only act on the circle with certain prescribed dynamical properties.

As an application, we show that the set $X \subset \mathbb{R} /\mathbb{Z} $ consisting of rotation numbers $\theta$ which can be forced by finitely presented groups is an infinitely generated $\mathbb{Q} $-module, containing countably infinitely many algebraically independent transcendental numbers. Here a rotation number $\theta$ is forced by a pair $(G_\theta,\alpha)$, where $G_\theta$ is a finitely presented group $G_\theta$ and $\alpha \in G_\theta$ is some element, if the set of rotation numbers of $\rho(\alpha)$ as $\rho$varies over $\rho \in \operatorname{Hom}(G_\theta,\operatorname{Homeo}^+(S^1))$ is precisely the set $\lbrace 0, \pm \theta \rbrace$.

We show that the set of subsets of $\mathbb{R} /\mathbb{Z} $ which are of the form

\begin{displaymath}\operatorname{rot}(X(G,\alpha)) = \lbrace r \in \mathbb{R} /... ... \in \operatorname{Hom}(G,\operatorname{Homeo}^+(S^1)) \rbrace,\end{displaymath}

where $G$ varies over countable groups, are exactly the set of closed subsets which contain $0$ and are invariant under $x \to -x$. Moreover, we show that every such subset can be approximated from above by $\operatorname{rot}(X(G_i,\alpha_i))$ for finitely presented $G_i$.

As another application, we construct a finitely generated group $\Gamma$ which acts faithfully on the circle, but which does not admit any faithful $C^1$action, thus answering in the negative a question of John Franks.


References [Enhancements On Off] (What's this?)

  • 1. Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122. MR 0146301
  • 2. Danny Calegari and Nathan M. Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003), no. 1, 149–204. MR 1965363, 10.1007/s00222-002-0271-6
  • 3. A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. 11 (1932), 333-375.
  • 4. A. O. Gel'fond, On Hilbert's seventh problem, Dokl. Akad. Nauk. SSSR 2 (1934), 1-6. Izv. Akad. Nauk SSSR 2, 177-182.
  • 5. Étienne Ghys, Classe d’Euler et minimal exceptionnel, Topology 26 (1987), no. 1, 93–105 (French). MR 880511, 10.1016/0040-9383(87)90024-3
  • 6. Étienne Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 163–185 (1994) (French). MR 1259430
  • 7. Étienne Ghys, Actions de réseaux sur le cercle, Invent. Math. 137 (1999), no. 1, 199–231 (French). MR 1703323, 10.1007/s002220050329
  • 8. Étienne Ghys and Vlad Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987), no. 2, 185–239 (French). MR 896095, 10.1007/BF02564445
  • 9. Shigenori Matsumoto, On discrete group actions on the unit circle, Dynamical systems and applications (Kyoto, 1987) World Sci. Adv. Ser. Dynam. Systems, vol. 5, World Sci. Publishing, Singapore, 1987, pp. 23–34. MR 974156
  • 10. Shigenori Matsumoto, Some remarks on foliated 𝑆¹ bundles, Invent. Math. 90 (1987), no. 2, 343–358. MR 910205, 10.1007/BF01388709
  • 11. José María Montesinos, Classical tessellations and three-manifolds, Universitext, Springer-Verlag, Berlin, 1987. MR 915761
  • 12. Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957
  • 13. H. Poincaré, Sur les courbes définies par les équations différentielles, Jour. de Math. 1 (4) (1885).
  • 14. Th. Schneider, Transzendenzuntersuchungen periodischer Funktionen I: Transzendenz von Potenzen, J. Reine Angew. Math. 172 (1934), 65-69.
  • 15. Dennis Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1216–1228. MR 934326
  • 16. William P. Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974), 347–352. MR 0356087
  • 17. Takashi Tsuboi, Homology of diffeomorphism groups, and foliated structures, Sūgaku 36 (1984), no. 4, 320–343 (Japanese). Translated in Sugaku Expositions 3 (1990), no. 2, 145–181. MR 780156
  • 18. Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
  • 19. A. Wilkinson and L. Burslem, Global rigidity of solvable group actions on $S^1$, preprint 2003.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58D05, 57S99

Retrieve articles in all journals with MSC (2000): 58D05, 57S99


Additional Information

Danny Calegari
Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email: dannyc@its.caltech.edu

DOI: https://doi.org/10.1090/S0002-9947-05-03754-2
Received by editor(s): December 8, 2003
Received by editor(s) in revised form: May 24, 2004
Published electronically: June 10, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.