Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Homomorphisms between Weyl modules for $ \operatorname{SL}_3(k)$

Authors: Anton Cox and Alison Parker
Journal: Trans. Amer. Math. Soc. 358 (2006), 4159-4207
MSC (2000): Primary 20G05; Secondary 20C30
Published electronically: April 11, 2006
MathSciNet review: 2219015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all homomorphisms between Weyl modules for $ \operatorname{SL}_3(k)$ when $ k$ is an algebraically closed field of characteristic at least three, and show that the $ \operatorname{Hom}$-spaces are all at most one dimensional. As a corollary we obtain all homomorphisms between Specht modules for the symmetric group when the labelling partitions have at most three parts and the prime is at least three. We conclude by showing how a result of Fayers and Lyle on Hom-spaces for Specht modules is related to earlier work of Donkin for algebraic groups.

References [Enhancements On Off] (What's this?)

  • 1. H. H. Andersen, On the structure of Weyl modules, Math. Z. 170 (1980), 1-14. MR 0558885 (82e:20051)
  • 2. -, $ p$-filtrations and the Steinberg module, J. Algebra 244 (2001), 664-683. MR 1859043 (2002k:20080)
  • 3. R. W. Carter and G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 0354887 (50:7364)
  • 4. R. W. Carter and M. T. J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Camb. Phil. Soc. 87 (1980), 419-425. MR 0556922 (81h:20048)
  • 5. A. G. Cox, Decomposition numbers for distant Weyl modules, J. Algebra 243 (2001), 448-472. MR 1850641 (2002k:20081)
  • 6. A. G. Cox and K. Erdmann, On Ext$ ^2$ between Weyl modules for quantum GL$ _n$, Math. Proc. Camb. Phil. Soc. 128 (2000), 441-463. MR 1744109 (2000m:20069)
  • 7. S. Donkin, Tilting modules for algebraic groups and finite dimensional algebras, Handbook of Tilting Theory (H. Krause and D. Happel, eds.), Cambridge University Press.
  • 8. -, A note on decomposition numbers of general linear groups and symmetric groups, Math. Proc. Camb. Phil. Soc 97 (1985), 473-488.
  • 9. -, On tilting modules for algebraic groups, Math. Z. 212 (1993), 39-60. MR 1200163 (94b:20045)
  • 10. S. Doty, Submodules of symmetric powers of the natural module for GL$ _n$, Contemp. Math. 88 (1989), 185-191. MR 0999991 (90f:20058)
  • 11. K. Erdmann, $ \operatorname{Ext}^1$ for Weyl modules of $ \mathrm{SL}_2(K)$, Math. Z. 218 (1995), 447-459. MR 1324539 (96a:20062)
  • 12. K. Erdmann and A. Henke, On Schur algebras, Ringel duality and symmetric groups, J. Pure Appl. Algebra 169 (2002), 175-199. MR 1897342 (2003m:20059)
  • 13. M. Fayers and S. Lyle, Row and column removal theorems for homomorphisms between Specht modules, J. Pure Appl. Algebra 185 (2003), 147-164. MR 2006423 (2004g:20017)
  • 14. J. W. Franklin, Homomorphisms between Verma modules and Weyl modules in characteristic $ p$, Ph.D. thesis, Warwick, 1981.
  • 15. G. D. James and A. Kerber, The representation theory of the Symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, 1981. MR 0644144 (83k:20003)
  • 16. J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157-199. MR 0581341 (82b:20057)
  • 17. -, Representations of algebraic groups, Academic Press, 1987. MR 0899071 (89c:20001)
  • 18. M. Koppinen, Homomorphisms between neighbouring Weyl modules, J. Algebra 103 (1986), 302-319. MR 0860709 (87m:20116)
  • 19. K. Kühne-Hausmann, Zur Untermodulstruktur der Weylmoduln für SL$ _3$, Bonner Math. Schriften 162 (1985). MR 0816532 (87f:20058)
  • 20. S. MacLane, Homology, Springer, 1963.
  • 21. A. E. Parker, The global dimension of Schur algebras for GL$ _2$ and GL$ _3$, J. Algebra 241 (2001), 340-378. MR 1838856 (2002e:20085)
  • 22. S. el B. Yehia, On a question of Verma about the indecomposable representations of algebraic groups and of their Lie algebras, Ph.D. thesis, London, 1992.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G05, 20C30

Retrieve articles in all journals with MSC (2000): 20G05, 20C30

Additional Information

Anton Cox
Affiliation: Centre for Mathematical Science, City University, Northampton Square, London, EC1V 0H, England

Alison Parker
Affiliation: School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia
Address at time of publication: Department of Mathematics, University of Leicester, Leicester, LE1 7RH, England

Received by editor(s): January 27, 2004
Received by editor(s) in revised form: September 20, 2004
Published electronically: April 11, 2006
Additional Notes: The first author was partially supported by Nuffield grant scheme NUF-NAL 02
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society