Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Cluster-tilted algebras


Authors: Aslak Bakke Buan, Robert J. Marsh and Idun Reiten
Journal: Trans. Amer. Math. Soc. 359 (2007), 323-332
MSC (2000): Primary 16G20, 16G70; Secondary 16E99, 16S99
DOI: https://doi.org/10.1090/S0002-9947-06-03879-7
Published electronically: July 21, 2006
MathSciNet review: 2247893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new class of algebras, which we call cluster-tilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of this, we prove a generalised version of so-called APR-tilting.


References [Enhancements On Off] (What's this?)

  • [AR] Auslander, M., Reiten, I., Representation theory of Artin algebras. V. Methods for computing almost split sequences and irreducible morphisms, Comm. Algebra 5, no. 5 (1977) 519-554. MR 0439882 (55:12763)
  • [APR] Auslander, M., Platzeck, M.I., Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46. MR 0530043 (80c:16027)
  • [AS] Auslander, M., SmaløS. O., Preprojective modules over Artin algebras, J. Algebra 66, (1980), 6-122. MR 0591246 (83a:16039)
  • [B] Bongartz, K., Tilted algebras Representations of algebras (Puebla, 1980), Lecture Notes in Math., 903, Springer, Berlin-New York, (1981), 26-38. MR 0654701 (83g:16053)
  • [BB] Brenner, S., Butler, M. C. R., Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., 832, Springer, Berlin-New York (1980), 103-169. MR 0607151 (83e:16031)
  • [BMRRT] Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G., Tilting theory and cluster combinatorics, preprint math.RT/0402054, (2004), to appear in Adv. Math.
  • [CCS] Caldero, P., Chapoton, F., and Schiffler, R., Quivers with relations arising from clusters ($ A_n$ case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364. MR 2187656
  • [FZ] Fomin, S., Zelevinsky, A., Cluster Algebras I: Foundations, J. Amer. Math. Soc. 15, no. 2, (2002), 497-529. MR 1887642 (2003f:16050)
  • [FZ2] Fomin, S., Zelevinsky, A., Cluster Algebras: Notes for the CDM-03 conference, preprint math.RT/0311493 (2003). MR 2132323
  • [H] Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge, (1988). MR 0935124 (89e:16035)
  • [HR] Happel, D., Ringel, C., Tilted algebras, Trans. Amer. Math. Soc. 274, no. 2 (1982), 399-443. MR 0675063 (84d:16027)
  • [K] Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551-581. MR 2184464
  • [MRZ] Marsh, R., Reineke, M., Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355, no. 1 (2003), 4171-4186. MR 1990581 (2004g:52014)
  • [R] Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück Comment. Math. Helv. 55, no. 2, (1980), 199-224. MR 0576602 (82k:16039)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G20, 16G70, 16E99, 16S99

Retrieve articles in all journals with MSC (2000): 16G20, 16G70, 16E99, 16S99


Additional Information

Aslak Bakke Buan
Affiliation: Institutt for Matematiske Fag, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway
Email: aslakb@math.ntnu.no

Robert J. Marsh
Affiliation: Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, England
Email: rjm25@mcs.le.ac.uk

Idun Reiten
Affiliation: Institutt for Matematiske Fag, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway
Email: idunr@math.ntnu.no

DOI: https://doi.org/10.1090/S0002-9947-06-03879-7
Keywords: APR-tilting theory, tilting module, complement, approximation theory, derived category, cluster category
Received by editor(s): February 26, 2004
Received by editor(s) in revised form: November 12, 2004
Published electronically: July 21, 2006
Additional Notes: The first author was supported by a grant from the Norwegian Research Council. The second author was supported by a Leverhulme Fellowship and by the Norwegian Research Council
Dedicated: Dedicated to Claus Michael Ringel on the occasion of his sixtieth birthday
Article copyright: © Copyright 2006 A. B. Buan, R. J. Marsh and I. Reiten

American Mathematical Society