Tangentially positive isometric actions and conjugate points
Author:
Raúl M. Aguilar
Journal:
Trans. Amer. Math. Soc. 359 (2007), 789825
MSC (2000):
Primary 53C20, 53C22, 53D20, 53D25
Published electronically:
September 11, 2006
MathSciNet review:
2255197
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a complete Riemannian manifold with no conjugate points and a principal bundle, where is a Lie group acting by isometries and the smooth quotient with the Riemannian submersion metric. We obtain a characterization of conjugate pointfree quotients in terms of symplectic reduction and a canonical pseudoRiemannian metric on the tangent bundle , from which we then derive necessary conditions, involving and , for the quotient metric to be conjugate pointfree, particularly for a reducible Riemannian manifold. Let , with the Lie Algebra of , be the moment map of the tangential action on and let be the canonical pseudoRiemannian metric on defined by the symplectic form and the map , . First we prove a theorem, stating that if is not positive definite on the action vector fields for the tangential action along then acquires conjugate points. (We proved the converse result in 2005.) Then, we characterize selfparallel vector fields on in terms of the positivity of the length of their tangential lifts along certain canonical subsets of . We use this to derive some necessary conditions, on and , for actions to be tangentially positive on relevant subsets of , which we then apply to isometric actions on complete conjugate pointfree reducible Riemannian manifolds when one of the irreducible factors satisfies certain curvature conditions.
 1.
Raúl
M. Aguilar, Moment map, a product structure, and Riemannian metrics
with no conjugate points, Comm. Anal. Geom. 13
(2005), no. 2, 401–438. MR 2154825
(2006g:53131)
 2.
Raúl
M. Aguilar, Symplectic reduction and the homogeneous complex
MongeAmpère equation, Ann. Global Anal. Geom.
19 (2001), no. 4, 327–353. MR 1842574
(2002g:53144), http://dx.doi.org/10.1023/A:1010715415333
 3.
S.
Bochner, Vector fields and Ricci
curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797. MR 0018022
(8,230a), http://dx.doi.org/10.1090/S000299041946086474
 4.
Nicolas
Bourbaki, Lie groups and Lie algebras. Chapters 1–3,
Elements of Mathematics (Berlin), SpringerVerlag, Berlin, 1989. Translated
from the French; Reprint of the 1975 edition. MR 979493
(89k:17001)
 5.
Peter
Dombrowski, On the geometry of the tangent bundle, J. Reine
Angew. Math. 210 (1962), 73–88. MR 0141050
(25 #4463)
 6.
Victor
Guillemin and Matthew
Stenzel, Grauert tubes and the homogeneous MongeAmpère
equation, J. Differential Geom. 34 (1991),
no. 2, 561–570. MR 1131444
(93e:32018)
 7.
Robert
Hermann, A sufficient condition that a mapping
of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960), 236–242. MR 0112151
(22 #3006), http://dx.doi.org/10.1090/S00029939196001121514
 8.
N.
J. Hitchin, A.
Karlhede, U.
Lindström, and M.
Roček, HyperKähler metrics and supersymmetry,
Comm. Math. Phys. 108 (1987), no. 4, 535–589.
MR 877637
(88g:53048)
 9.
Wilhelm
Klingenberg, Riemannian geometry, de Gruyter Studies in
Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1982. MR 666697
(84j:53001)
 10.
Shoshichi
Kobayashi, Transformation groups in differential geometry,
Classics in Mathematics, SpringerVerlag, Berlin, 1995. Reprint of the 1972
edition. MR
1336823 (96c:53040)
 11.
Shoshichi
Kobayashi and Katsumi
Nomizu, Foundations of differential geometry. Vol I,
Interscience Publishers, a division of John Wiley & Sons, New YorkLond
on, 1963. MR
0152974 (27 #2945)
 12.
Shoshichi
Kobayashi and Katsumi
Nomizu, Foundations of differential geometry. Vol. II,
Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1969. MR 0238225
(38 #6501)
 13.
László
Lempert and Róbert
Szőke, Global solutions of the homogeneous complex
MongeAmpère equation and complex structures on the tangent bundle
of Riemannian manifolds, Math. Ann. 290 (1991),
no. 4, 689–712. MR 1119947
(92m:32022), http://dx.doi.org/10.1007/BF01459268
 14.
Jerrold
Marsden and Alan
Weinstein, Reduction of symplectic manifolds with symmetry,
Rep. Mathematical Phys. 5 (1974), no. 1,
121–130. MR 0402819
(53 #6633)
 15.
Barrett
O’Neill, The fundamental equations of a submersion,
Michigan Math. J. 13 (1966), 459–469. MR 0200865
(34 #751)
 1.
 Aguilar, R. Moment map, a product structure and Riemannian metrics with no conjugate points. Comm. Anal. Geom. 13 (2005), 401438.MR 2154825
 2.
 Symplectic reduction and the complex homogeneous MongeAmpère equation. Ann. Glob. Analysis & Geom. 19 (2001), 327353. MR 1842574 (2002g:53144)
 3.
 Bochner, S. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946), 776797. MR 0018022 (8:230a)
 4.
 Bourbaki, N. Lie groups and Lie algebra. Chapters 13, SpringerVerlag, Berlin (1989). MR 0979493 (89k:17001)
 5.
 Dombrowski., P. On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1961), 7388. MR 0141050 (25:4463)
 6.
 Guillemin, V. & Stenzel, M. Grauert tubes and the homogeneous MongeAmpère equation I. J. Diff. Geometry 34 (1991), 561570.MR 1131444 (93e:32018)
 7.
 Hermann, R. A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle. Proc. A.M.S. 11 (1960), 239242.MR 0112151 (22:3006)
 8.
 Hitchin, N., Karlhede, A., Linstrtröm, U., Rocek, M. HyperKähler metrics and supersymmetry. Comm. Math. Phys. 108 4 (1987), 535589. MR 0877637 (88g:53048)
 9.
 Klingenberg, W. Riemannian geometry. de Gruyter, Berlin (1982).MR 0666697 (84j:53001)
 10.
 Kobayashi S. Transformation groups in differential geometry. SpringerVerlag, Berlin (1995). MR 1336823 (96c:53040)
 11.
 Kobayashi S. & Nomizu, K. Foundations of differential geometry I. Interscience Publishers, N.Y. (1963). MR 0152974 (27:2945)
 12.
 Foundations of differential geometry II. Interscience Publishers, N.Y. (1969). MR 0238225 (38:6501)
 13.
 Lempert, L. & Szoke, R. Global solutions of the homogeneous complex MongeAmpère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290 (1991), 689712. MR 1119947 (92m:32022)
 14.
 Marsden, J. & Weisntein, A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5 (1974), 121130.MR 0402819 (53:6633)
 15.
 O'Neill, B. The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459469. MR 0200865 (34:751)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
53C20,
53C22,
53D20,
53D25
Retrieve articles in all journals
with MSC (2000):
53C20,
53C22,
53D20,
53D25
Additional Information
Raúl M. Aguilar
Affiliation:
Massachusetts Maritime Academy, Buzzards Bay, Massachusetts 02562
Email:
raguilar@maritime.edu
DOI:
http://dx.doi.org/10.1090/S0002994706039201
PII:
S 00029947(06)039201
Keywords:
Moment map,
isometric action,
conjugate points,
symplectic reduction.
Received by editor(s):
January 8, 2004
Received by editor(s) in revised form:
December 16, 2004
Published electronically:
September 11, 2006
Article copyright:
© Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
