Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Scrollar syzygies of general canonical curves with genus $ \le 8$

Author: Hans-Christian Graf v. Bothmer
Journal: Trans. Amer. Math. Soc. 359 (2007), 465-488
MSC (2000): Primary 13D02, 14H45, 14C20
Published electronically: September 12, 2006
MathSciNet review: 2255182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for a general canonical curve $ C \subset \mathbb{Z}^{g-1}$ of genus $ g$, the space of $ {\lceil\frac{g-5}{2}\rceil}$th (last) scrollar syzygies is isomorphic to the Brill-Noether locus $ C^1_{\lceil \frac{g+2}{2} \rceil}$. Schreyer has conjectured that these scrollar syzygies span the space of all $ {\lceil \frac{g-5}{2} \rceil}$th (last) syzygies of $ C$. Using Mukai varieties we prove this conjecture for genus $ 6$, $ 7$ and $ 8$.

References [Enhancements On Off] (What's this?)

  • [ACGH85] E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris.
    Geometry of Algebraic Curves.
    Grundlehren der mathematischen Wissenschaften 129. Springer, Heidelberg, 1985. MR 0770932 (86h:14019)
  • [AH81] E. Arbarello and J. Harris.
    Canonical Curves and Quadrics of Rank 4.
    Comp. Math., 43:145-179, 1981. MR 0622446 (82k:14020)
  • [AM67] A. Andreotti and A. Mayer.
    On period relations for abelian integrals on algebraic curves.
    Ann. Scuola Norm. Sup. Pisa, 21:189-238, 1967. MR 0220740 (36:3792)
  • [Ehb94] S. Ehbauer.
    Syzygies of points in projective space and applications.
    In F. Orecchia, editor, Zero-dimensional schemes. Proceedings of the international conference held in Ravello, Italy, June 8-13, 1992, pages 145-170, Berlin, 1994. de Gruyter. MR 1292482 (95h:13012)
  • [Eis88] D. Eisenbud.
    Linear sections of determinantal varieties.
    Amer. J. Math., 110(3):541-575, 1988. MR 0944327 (89h:14041)
  • [GL84] M. Green and R. Lazarsfeld.
    The non-vanishing of certain Koszul cohomology groups.
    J. Diff. Geom., 19:168-170, 1984.
  • [Gre84a] M.L. Green.
    Koszul cohomology and the geometry of projective varieties.
    J. Differential Geometry, 19:125-171, 1984. MR 0739785 (85e:14022)
  • [Gre84b] M.L. Green.
    Quadrics of rank four in the ideal of a canonical curve.
    Inv. Math., 75:85-104, 1984. MR 0728141 (85f:14028)
  • [GS02] Daniel R. Grayson and Michael E. Stillman.
    Macaulay 2, a software system for research in algebraic geometry.
    Available at , 2002.
  • [Har92] J. Harris.
    Algebraic Geometry.
    Graduate Texts in Math. 133. Springer, Heidelberg, 1992. MR 1182558 (93j:14001)
  • [HR98] A. Hirschowitz and S. Ramanan.
    New evidence for Green's conjecture on syzygies of canonical curves.
    Ann. Sci. Ec. Norm. Super., IV Ser 31(4):145-152, 1998. MR 1603255 (99a:14033)
  • [JPW81] T. Józefiak, P. Pragacz, and J. Weyman.
    Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices, 1981.
  • [KN88] G. Kempf and L. Ness.
    Tensor products of fundamental representations.
    Can. J. Math, XL(3):633-648, 1988. MR 0960599 (89m:20046)
  • [Las78] A. Lascoux.
    Syzygis des variétés déterminantales.
    Adv. Math., 30:202-237, 1978. MR 0520233 (80j:14043)
  • [Muk92a] S. Mukai.
    Curves and symmetric spaces.
    Proc. Japan Acad. Ser. A Math. Sci., 68:7-10, 1992. MR 1158012 (93d:14042)
  • [Muk92b] S. Mukai.
    Fano 3-folds.
    In G. Ellingsrud, C. Peskine, G. Sacchiero, and S.A. Stromme, editors, Complex Projective Geometry, volume 179 of LMS Lecture Note Series, pages 255-261. Cambridge University Press, 1992. MR 1201387 (94a:14042)
  • [Ott95] G. Ottaviani.
    Rational Homogeneous Varieties.
    Lecture notes for the summer school in Algebraic Geometry in Cortona, 1995.
  • [Pet23] K. Petri.
    Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen.
    Math. Ann., 88:242-289, 1923. MR 1512130
  • [Sch86] F.O. Schreyer.
    Syzygies of canonical curves and special linear series.
    Math. Ann., 275:105-137, 1986. MR 0849058 (87j:14052)
  • [Sch88] F.O. Schreyer.
    Green's Conjecture for general $ p$-gonal Curves of large Genus.
    In E. Ballico and C. Ciliberto, editors, Algebraic Curves and Projective Geometry, volume 1389 of Lecture Notes in Mathematics, pages 254-260, Springer, Heidelberg, 1988. MR 1023403 (90j:14041)
  • [Sch91] F.O. Schreyer.
    A standard basis approach to syzygies of canonical curves.
    J. Reine Angew. Math., 421:83-123, 1991. MR 1129577 (92j:14040)
  • [TiB02] Montserrat Teixidor i Bigas.
    Green's conjecture for the generic $ r$-gonal curve of genus $ g\geq 3r-7$.
    Duke Math. J., 111(2):195-222, 2002. MR 1882133 (2003a:14046)
  • [vB00] H.-Chr. Graf v. Bothmer.
    Geometrische Syzygien von kanonischen Kurven.
    Dissertation, Universität Bayreuth, 2000.
  • [Voi88] C. Voisin.
    Courbes tétragonal et cohomologie de Koszul.
    J. Reine Angew. Math., 387:111-121, 1988. MR 0946352 (89e:14036)
  • [Voi02] C. Voisin.
    Green's generic syzygy conjecture for curves of even genus lying on a $ K3$ surface.
    J. Eur. Math. Soc. (JEMS), 4(4):363-404, 2002. MR 1941089 (2003i:14040)
  • [Voi05] Claire Voisin.
    Green's canonical syzygy conjecture for generic curves of odd genus.
    Compos. Math., 141(5):1163-1190, 2005. MR 2157134 (2006c:14053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D02, 14H45, 14C20

Retrieve articles in all journals with MSC (2000): 13D02, 14H45, 14C20

Additional Information

Hans-Christian Graf v. Bothmer
Affiliation: Laboratoire J.-A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France
Address at time of publication: Institiut für Algebraische Geometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

Received by editor(s): November 12, 2002
Published electronically: September 12, 2006
Additional Notes: This work was supported by the Schwerpunktprogramm “Global Methods in Complex Geometry” of the Deutsche Forschungs Gemeinschaft and Marie Curie Fellowship HPMT-CT-2001-001238
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society