Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends


Authors: Joaquín Pérez and Martin Traizet
Journal: Trans. Amer. Math. Soc. 359 (2007), 965-990
MSC (2000): Primary 53A10; Secondary 49Q05, 53C42
DOI: https://doi.org/10.1090/S0002-9947-06-04094-3
Published electronically: October 16, 2006
MathSciNet review: 2262839
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an integer $ k\geq 2$, let $ {\mathcal S}(k)$ be the space of complete embedded singly periodic minimal surfaces in $ \mathbb{R}^3$, which in the quotient have genus zero and $ 2k$ Scherk-type ends. Surfaces in $ {\mathcal S}(k)$ can be proven to be proper, a condition under which the asymptotic geometry of the surfaces is well known. It is also known that $ {\mathcal S}(2)$ consists of the $ 1$-parameter family of singly periodic Scherk minimal surfaces. We prove that for each $ k\geq 3$, there exists a natural one-to-one correspondence between $ {\mathcal S}(k)$ and the space of convex unitary nonspecial polygons through the map which assigns to each $ M\in {\mathcal S}(k)$ the polygon whose edges are the flux vectors at the ends of $ M$ (a special polygon is a parallelogram with two sides of length $ 1$ and two sides of length $ k-1$). As consequence, $ {\mathcal S}(k)$ reduces to the saddle towers constructed by Karcher.


References [Enhancements On Off] (What's this?)

  • 1. P. Collin, Topologie et courbure des surfaces minimales de $ {\mathbb{R}^3}$, Annals of Math. 2nd Series 145-1 (1997), 1-31. MR 1432035 (98d:53010)
  • 2. C. Cosín and A. Ros, A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature, Indiana Univ. Math. J. 50 (2001), no. 2, 847-879. MR 1871392 (2003d:53013)
  • 3. P. Griffiths and J. Harris, Principles of algebraic geometry (Pure and Applied Mathematics), Wiley-Interscience, 1978. MR 0507725 (80b:14001)
  • 4. H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321-342. MR 0190811 (32:8221)
  • 5. H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), 83-114. MR 0958255 (89i:53009)
  • 6. H. Lazard-Holly and W. H. Meeks III, The classification of embedded doubly-periodic minimal surfaces of genus zero, Invent. Math. 143 (2001), 1-27. MR 1802791 (2001m:53013)
  • 7. F. J. López and A. Ros, On embedded complete minimal surfaces of genus zero, J. of Differential Geometry 33 (1991), no. 1, 293-300. MR 1085145 (91k:53019)
  • 8. W. H. Meeks III, The theory of triply-periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877-936. MR 1078743 (92e:53012)
  • 9. W. H. Meeks III, J. Pérez, and A. Ros, Uniqueness of the Riemann minimal examples, Invent. Math. 133 (1998), 107-132. MR 1626477 (99b:53013)
  • 10. W. H. Meeks III and H. Rosenberg, The minimal lamination closure theorem, Duke Math J. 133 (2006), no. 3, 467-497. MR 2228460
  • 11. -, The geometry of periodic minimal surfaces, Comment. Math. Helvetici 68 (1993), 538-578. MR 1241472 (95a:53011) 807.53049.
  • 12. -, The uniqueness of the helicoid and the asymptotic geometry of properly embedded minimal surfaces with finite topology, Annals of Math. 161 (2005), 723-754. MR 2153399 (2006f:53012)
  • 13. J. Pérez, M. Rodríguez, and M. Traizet, The classification of doubly periodic minimal tori with parallel ends, Journal of Diff. Geometry 69 (2005), no. 3, 523-577. MR 2170278
  • 14. J. Pérez and A. Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513-525. MR 1204835 (94a:53020)
  • 15. -, The space of properly embedded minimal surfaces with finite total curvature., Indiana Univ. Math. J. 45 (1996), no. 1, 177-204. MR 1406689 (97k:58034)
  • 16. -, Properly embedded minimal surfaces with finite total curvature, The Global Theory of Minimal Surfaces in Flat Spaces, Lecture Notes in Math 1775, Springer-Verlag, 2002, G. P. Pirola, editor, pp. 15-66. MR 1901613
  • 17. A. Ros, Embedded minimal surfaces: forces, topology and symmetries, Calc. Var. 4 (1996), 469-496. MR 1402733 (98c:53010)
  • 18. H. F. Scherk, Bemerkungen über die kleinsteFläche innerhalb gegebener Grenzen, J. R. Angew. Math. 13 (1835), 185-208, ERAM 013.0481cj.
  • 19. M. Traizet, An embedded minimal surface with no symmetries, J. Differential Geometry 60 (2002), no. 1, 103-153. MR 1924593 (2004c:53008)
  • 20. F. Wei, Some existence and uniqueness theorems for doubly periodic minimal surfaces, Invent. Math. 109 (1992), 113-136. MR 1168368 (93c:53004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53A10, 49Q05, 53C42

Retrieve articles in all journals with MSC (2000): 53A10, 49Q05, 53C42


Additional Information

Joaquín Pérez
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
Email: jperez@ugr.es

Martin Traizet
Affiliation: Faculte des Sciences et Techniques, Universite François Rabelais, Parc de Grandmont, 37200, Tours, France
Email: martin.traizet@lmpt.univ-tours.fr

DOI: https://doi.org/10.1090/S0002-9947-06-04094-3
Keywords: Singly periodic minimal surface, Scherk-type end, moduli space
Received by editor(s): September 29, 2004
Published electronically: October 16, 2006
Additional Notes: The research of the first author was partially supported by a MEC/FEDER grant no. MTM2004-02746.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society