Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Lorentz dynamics: From group actions to warped products via homogeneous spaces


Authors: A. Arouche, M. Deffaf and A. Zeghib
Journal: Trans. Amer. Math. Soc. 359 (2007), 1253-1263
MSC (2000): Primary 53C50, 54H15
DOI: https://doi.org/10.1090/S0002-9947-06-04279-6
Published electronically: October 17, 2006
MathSciNet review: 2262849
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show a geometric rigidity of isometric actions of non-compact (semisimple) Lie groups on Lorentz manifolds. Namely, we show that the manifold has a warped product structure of a Lorentz manifold with constant curvature by a Riemannian manifold.


References [Enhancements On Off] (What's this?)

  • 1. S. Adams, Dynamics of simple Lie groups on Lorentz manifolds. Geom. Dedicata 105 (2004), 1-12.MR 2057240 (2005d:37050)
  • 2. S. Adams, G. Stuck, The isometry group of a compact Lorentz manifold. I, II. Invent. Math. 129 (1997), no. 2, 239-261, 263-287.MR 1465326 (98i:53092)
  • 3. C. Boubel, A. Zeghib, Isometric actions of Lie subgroups of the Moebius group. Nonlinearity 17 (2004), no. 5, 1677-1688.MR 2086144 (2005e:37049)
  • 4. M. Gromov, Rigid transformations groups. Géométrie différentielle (Paris, 1986), 65-139, Travaux en Cours, 33, Hermann, Paris, 1988.MR 0955852 (90d:58173)
  • 5. S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. 241 (1979) 209-215.MR 0535555 (81a:53037)
  • 6. N. Kowalsky, Actions of non-compact simple groups of Lorentz manifolds. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 5, 595-599. MR 1356560 (96g:53093)
  • 7. N. Kowalsky, Noncompact simple automorphism groups of Lorentz manifolds. Ann. Math. 144 (1997), 611-640.MR 1426887 (98g:57059)
  • 8. R. Ponge; H. Reckziegel, Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48 (1993), no. 1, 15-25.MR 1245571 (94h:53093)
  • 9. D. Witte, Homogeneous Lorentz manifolds with simple isometry group. Beiträge Algebra Geom. 42, no. 2 (2001) 451-461.MR 1865533 (2002i:53064)
  • 10. A. Zeghib, Remarks on Lorentz symmetric spaces, Compositio Math. 140 (2004) 1675-1678.MR 2098408 (2005g:53127)
  • 11. A. Zeghib, Sur les espaces-temps homogènes. The Epstein birthday schrift, 551-576, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998.MR 1668344 (99k:57079)
  • 12. A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. Part II: Geometry of analytic Lorentz manifolds with large isometry groups. GAFA, 9 (1999) 823-854.MR 1719610 (2001g:53060)
  • 13. R. Zimmer, On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math. 83 (1986) 411-426. MR 0827360 (87j:58019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C50, 54H15

Retrieve articles in all journals with MSC (2000): 53C50, 54H15


Additional Information

A. Arouche
Affiliation: Faculté des Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El’Alia, Bab Ezzouar, Alger, Algeria
Email: arouche@math.usthb.dz

M. Deffaf
Affiliation: Faculté des Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El’Alia, Bab Ezzouar, Alger, Algeria
Email: deffaf1@yahoo.fr

A. Zeghib
Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon cedex 07, France
Email: Zeghib@umpa.ens-lyon.fr

DOI: https://doi.org/10.1090/S0002-9947-06-04279-6
Keywords: Lorentz manifolds, warped product, semi-simple transformation groups
Received by editor(s): December 14, 2004
Published electronically: October 17, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society