Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Completeness of systems of complex exponentials and the Lambert $ W$ functions


Authors: André Boivin and Hualiang Zhong
Journal: Trans. Amer. Math. Soc. 359 (2007), 1829-1849
MSC (2000): Primary 42C15, 42C30, 34K07; Secondary 30B50
DOI: https://doi.org/10.1090/S0002-9947-06-03950-X
Published electronically: November 22, 2006
MathSciNet review: 2272151
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study some of the properties of the solution system $ \{e^{i\lambda_nt}\}$ of the delay-differential equation $ y'(t) = ay(t-1)$. We first establish some general results on the stability of the completeness of exponential systems in $ L^2$ and then show that the solution system above is always complete, but is not an unconditional basis in $ L^2(-1/2,1/2)$.


References [Enhancements On Off] (What's this?)

  • 1. S. A. Avdonin and I. Joó, Riesz basis of exponentials and sine-type functions, Acta Math. Hungar. 51(1) (1988), 3-14. MR 0934576 (90g:42058)
  • 2. R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, 1963. MR 0147745 (26:5259)
  • 3. A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79-93. MR 0209758 (35:654)
  • 4. R. P. Boas, Jr., Entire Functions, Academic Press, 1954. MR 0068627 (16:914f)
  • 5. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Advances in Comp. Math. 5 (1996), 329-359. MR 1414285 (98j:33015)
  • 6. N. Fujii, A. Nakamura, and R. Redheffer, On the excess of sets of complex exponentials, Proc. Amer. Math. Soc. 127 (1999), 1815-1818. MR 1476126 (99i:30006)
  • 7. J. Garnett, Bounded Analytic Functions, Academic Press, 1981. MR 0628971 (83g:30037)
  • 8. S. Jaffard and R. M. Young, A representation theorem for Schauder bases in Hilbert space, Proc. Amer. Math. Soc. 126 (2) (1998), 553-560. MR 1425127 (98d:46019)
  • 9. M. I. Kadec', The exact value of the Paley-Wiener constant (Russian), Dokl. Akad. Nauk SSSR 155 (1964), 1253-1254. English translation: Sov. Math. Dokl. 5 (1964), 559-561. MR 0162088 (28:5289)
  • 10. P. Koosis, Lecons sur le Théorème de Beurling et Malliavin, les Publications CRM, (Montréal), 1996. MR 1430571 (99e:42023)
  • 11. B. Ja. Levin, Distribution of zeros of entire functions, Translations of Mathematical Monographs, Vol. 5, Amer. Math. Soc., 1980. MR 0589888 (81k:30011)
  • 12. N. Levinson, On the closure of $ \{e^{i\lambda_n x}\}$ and integral functions, Proc. Cambridge Phil. Soc. 31 (1935), 335-346.
  • 13. N. Levinson, Gap and Density Theorems, AMS. Col. Public., Vol. 26, 1940. MR 0003208 (2:180d)
  • 14. A. M. Minkin, The reflection of indices and unconditional bases of exponentials (Russian), Algebra i Analiz 3 (1991), 109-134. English translation: St. Petersburg Math. J. 3 (1992), 1043-1068. MR 1186238 (95a:42051)
  • 15. R. E. Paley and N. Wiener, Fourier transforms in the complex domain, AMS. Col. Public., Vol. 19, 1934. MR 1451142 (98a:01023)
  • 16. R. M. Redheffer, Completeness of Sets of Complex Exponentials, Advances in Mathematics 24 (1977), 1-62. MR 0447542 (56:5852)
  • 17. R. M. Redheffer and R. M. Young, Completeness and basis properties of complex exponentials, Trans. Amer. Math. Soc. 277 (1983), 93-111. MR 0690042 (84c:42047)
  • 18. A. M. Sedleckii, Excesses of systems of exponential functions (Russian), Mat. Zametki 22 (1977), 803-814. English translation: Math. Notes 22 (1977), 941-947. MR 0477593 (57:17111)
  • 19. A. M. Sedleckii, On completeness of the system $ \{exp(ix(n+ih_n))\}$, Anal. Math. 4 (1978), 125-143. MR 0505535 (80g:42021)
  • 20. A. M. Sedletskii, Excesses of systems, close to one another, of exponentials in $ L^p$ (Russian), Sibirs. Mat. Zh. 24 (1983), 164-175. English translation: Siberian Math. J. 24 (1983), 626-635. MR 0713593 (84i:42042)
  • 21. A. M. Sedletskii, Purely imaginary perturbations of the exponents $ \lambda_n$ in the system $ \{exp(i\lambda_n t)\}$ (Russian), Sibirs. Mat. Zh. 26 (1985), 151-158. English translation: Siberian Math. J. 26 (1985), 597-603. MR 0804027 (87a:42039)
  • 22. A. M. Sedletskii, Completeness and nonminimality of systems of exponentials in $ L^p(-\pi,\pi)$, Sibirs. Mat. Zh. 29 (1988), 159-170. English translation: Siberian Math. J. 29 (1988), 123-133. MR 0936794 (89j:42010)
  • 23. A.M. Sedletskii, Fourier transforms and approximations. Gordon and Breach Science Publ., Amsterdam, 2000. MR 1935577 (2003i:42002)
  • 24. S. Verblunsky, On a class of Cauchy exponential series, Rend. Circ. Mat. Palermo 10 (1961), 5-26. MR 0145084 (26:2619)
  • 25. E. M. Wright, Solution of the equation $ ze^z=a$, Bull. Amer. Math. Soc. 65 (1959), 89-93. MR 0129130 (23:B2167)
  • 26. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, 1980 and 2001. MR 0591684 (81m:42027); MR 1836633 (2002b:42001)
  • 27. R. M. Young, On a theorem of Ingham on nonharmonic Fourier series, Proc. Amer. Math. Soc. 92 (1984), 549-553. MR 0760944 (85m:42028)
  • 28. R. M. Young, On the stability of exponential bases in $ L^2(-\pi,\pi)$, Proc. Amer. Math. Soc. 100 (1987), 117-122. MR 0883412 (88m:42056)
  • 29. H. Zhong, Non-harmonic Fourier series and applications, Ph.D. thesis, Univ. of Western Ontario, 2000.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42C15, 42C30, 34K07, 30B50

Retrieve articles in all journals with MSC (2000): 42C15, 42C30, 34K07, 30B50


Additional Information

André Boivin
Affiliation: Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
Email: boivin@uwo.ca

Hualiang Zhong
Affiliation: Robarts Research Institute, 100 Perth Drive, P.O. Box 5015, London, Ontario, Canada N6A 5K8
Address at time of publication: Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298
Email: hzhong@vcu.edu

DOI: https://doi.org/10.1090/S0002-9947-06-03950-X
Received by editor(s): July 4, 2003
Received by editor(s) in revised form: February 4, 2005
Published electronically: November 22, 2006
Additional Notes: The first author was partially supported by a grant from NSERC of Canada
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society