Compact operators and nest representations of limit algebras

Authors:
Elias Katsoulis and Justin R. Peters

Journal:
Trans. Amer. Math. Soc. **359** (2007), 2721-2739

MSC (2000):
Primary 47L80

DOI:
https://doi.org/10.1090/S0002-9947-07-04071-8

Published electronically:
January 4, 2007

MathSciNet review:
2286053

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the nest representations of a strongly maximal TAF algebra , whose ranges contain non-zero compact operators. We introduce a particular class of such representations, the essential nest representations, and we show that their kernels coincide with the completely meet irreducible ideals. From this we deduce that there exist enough contractive nest representations, with non-zero compact operators in their range, to separate the points in . Using nest representation theory, we also give a coordinate-free description of the fundamental groupoid for strongly maximal TAF algebras.

For an arbitrary nest representation , we show that the presence of non-zero compact operators in the range of implies that is similar to a completely atomic nest. If, in addition, is closed, then every compact operator in can be approximated by sums of rank one operators . In the case of -ordered nest representations, we show that contains finite rank operators iff fails to be a prime ideal.

**1.**K. Davidson,*Nest Algebras*, Pitman Research Notes in Mathematics Series,**191**, 1988. MR**0972978 (90f:47062)****2.**K. Davidson,*-algebras by example*, Fields Institute Monographs, American Mathematical Society, 1996. MR**1402012 (97i:46095)****3.**K. Davidson and E. Katsoulis,*Primitive limit algebras and -envelopes*, Adv. Math.**170**, 2002, 181-205. MR**1932328 (2003h:47140)****4.**K. Davidson, E. Katsoulis and J. Peters,*Meet irreducible ideals and representations of limit algebras*, J. Funct. Anal.**200**, 2003, 23-30. MR**1974086 (2004b:47126)****5.**A. Donsig, A. Hopenwasser, T. Hudson, M. Lamoureux and B. Solel,*Meet irreducible ideals in direct limit algebras*, Math. Scand.**87**, 2000, 27-63. MR**1776964 (2001f:47112)****6.**A. Donsig and T. Hudson,*The lattice of ideals of a triangular AF algebra*, J. Funct. Anal.**138**, 1996, 1-39. MR**1391629 (97e:47068)****7.**A. Donsig, T. Hudson and E. Katsoulis,*Algebraic isomorphisms of limit algebras*, Trans. Amer. Math. Soc.**353**, 2001, 1169-1182. MR**1804417 (2001k:47103)****8.**A. Donsig, D. Pitts, S. Power,*Algebraic isomorphisms and spectra of triangular limit algebras*, Indiana Univ. Math. J.**50**, 2001, 1131-1147. MR**1871350 (2002k:47148)****9.**J. Erdos,*Operators of finite rank in nest algebras*, J. London Math. Soc.**43**, 1968, 391-397. MR**0230156 (37:5721)****10.**J. Erdos and S. Power,*Weakly closed ideals of nest algebras*, J. Operator Theory**7**, 1982, 219-235. MR**0658610 (84a:47056)****11.**J. Glimm,*Type I -algebras*, Ann. Math.**73**, 1961, 572-612. MR**0124756 (23:A2066)****12.**A. Hopenwasser, J. Peters, S. Power,*Nest representations of TAF algebras*, Canad. J. Math.**52**, 2000, 1221-1234. MR**1794303 (2001h:47121)****13.**E. Katsoulis and D. Kribs,*Isomorphisms of algebras associated with directed graphs*, Math. Ann.**330**, 2004, 709-728. MR**2102309 (2005i:47114)****14.**E. Katsoulis and R. Moore,*On compact operators in certain reflexive operator algebras*, J. Operator Theory**25**, 1991, 177-182. MR**1191259 (93i:47065)****15.**D.W. Kribs, S.C. Power,*Free semigroupoid algebras*, J. Ramanujan Math. Soc.**19**, (2004), 117-159. MR**2076898 (2005c:47106)****16.**M. Lamoureux,*Nest representations and dynamical systems*, J. Funct. Anal.**114**, 1993, 345-376. MR**1223711 (95e:46078)****17.**M. Lamoureux,*Ideals in some continuous nonselfadjoint crossed product algebras*, J. Funct. Anal.**142**, 1996, 211-248. MR**1419421 (97m:47060)****18.**M. Lamoureux,*Some triangular AF algebras*, J. Operator Theory**37**, 1997, 91-109. MR**1438202 (2000f:47108)****19.**D. Larson and B. Solel,*Structured triangular limit algebras*, Proc. London Math. Soc.**75**, 1997, 177-193. MR**1444318 (98c:46153)****20.**P.S. Muhly,*A finite dimensional introduction to operator algebra*, A. Katavolos (ed.), Operator Algebras and Application, Kluwer Academic Publishers, 1997, 313-354. MR**1462686 (98h:46062)****21.**P. Muhly and B. Solel,*Subalgebras of groupoid -algebras*, J. Reine Angew. Math.**402**, 1989, 41-75. MR**1022793 (90m:46098)****22.**J. Orr and J. Peters,*Some representations of TAF algebras*, Pacific. J. Math.**167**, 1995, 129-161. MR**1318167 (96c:46055)****23.**V. I. Paulsen,*Completely Bounded Maps and Dilations*, Longman Scientific, New York, Wiley, 1986. MR**0868472 (88h:46111)****24.**G. K. Pedersen,*C-Algebras and their automorphism groups*, London Mathematical Society Monograph, Academic Press, 1979. MR**0548006 (81e:46037)****25.**J. Peters, Y.T. Poon and B. Wagner,*Triangular AF algebras*, J. Operator Theory**23**, 1990, 81-114. MR**1054818 (91h:46102)****26.**S. Power,*Classification of tensor products of triangular operator algebras*, Proc. London Math. Soc.**61**, 1990, 571-614. MR**1069516 (92a:47053)****27.**J. R. Ringrose,*On some algebras of operators*, Proc. London Math. Soc.**15**, 1965, 61-83. MR**0171174 (30:1405)****28.**S. Stratila and D.V. Voiculescu,*Representations of AF-algebras and of the group*, Springer Lect. Notes Math.**486**, Springer-Verlag, Berlin, New York, 1975. MR**0458188 (56:16391)****29.**M. Thelwall,*Dilation theory for subalgebras of AF algebras*, J. Operator Theory**25**, 1991, 275-282. MR**1203033 (94a:46079)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
47L80

Retrieve articles in all journals with MSC (2000): 47L80

Additional Information

**Elias Katsoulis**

Affiliation:
Department of Mathematics, East Carolina University, Greenville, North Carolina 27858

Email:
katsoulise@ecu.edu

**Justin R. Peters**

Affiliation:
Department of Mathematics, Iowa State University, Ames, Iowa 50011

Email:
peters@iastate.edu

DOI:
https://doi.org/10.1090/S0002-9947-07-04071-8

Received by editor(s):
April 15, 2004

Received by editor(s) in revised form:
March 27, 2005

Published electronically:
January 4, 2007

Additional Notes:
The first author’s research was partially supported by a grant from ECU

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.