Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Root numbers of abelian varieties


Author: Maria Sabitova
Journal: Trans. Amer. Math. Soc. 359 (2007), 4259-4284
MSC (2000): Primary 11G10; Secondary 11F80, 11G40, 11R32
Published electronically: April 11, 2007
MathSciNet review: 2309184
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize a theorem of D. Rohrlich concerning root numbers of elliptic curves over number fields. Our result applies to arbitrary abelian varieties. Namely, under certain conditions which naturally extend the conditions used by D. Rohrlich, we show that the root number $ W(A,\tau)$ associated to an abelian variety $ A$ over a number field $ F$ and a complex finite-dimensional irreducible representation $ \tau$ of $ \operatorname{Gal}(\overline{F}/F)$ with real-valued character is equal to $ 1$. We also show that our result is consistent with a refined version of the conjecture of Birch and Swinnerton-Dyer.


References [Enhancements On Off] (What's this?)

  • 1. Claude Chevalley, Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann & Cie, Paris, 1955 (French). MR 0068552
  • 2. Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353
  • 3. J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
  • 4. Michel Raynaud, 1-motifs et monodromie géométrique, Astérisque 223 (1994), 295–319 (French). Périodes 𝑝-adiques (Bures-sur-Yvette, 1988). MR 1293976
  • 5. David E. Rohrlich, The vanishing of certain Rankin-Selberg convolutions, Automorphic forms and analytic number theory (Montreal, PQ, 1989) Univ. Montréal, Montreal, QC, 1990, pp. 123–133. MR 1111015
  • 6. David E. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 125–157. MR 1260960
  • 7. David E. Rohrlich, Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), no. 3, 311–349. MR 1387669
  • 8. Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
  • 9. Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 0236190
  • 10. John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 0206004

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G10, 11F80, 11G40, 11R32

Retrieve articles in all journals with MSC (2000): 11G10, 11F80, 11G40, 11R32


Additional Information

Maria Sabitova
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Address at time of publication: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: sabitova@math.upenn.edu, sabitova@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04148-7
Keywords: Abelian variety, root number, Weil-Deligne group.
Received by editor(s): May 6, 2005
Received by editor(s) in revised form: July 21, 2005
Published electronically: April 11, 2007
Article copyright: © Copyright 2007 American Mathematical Society