Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Root numbers of abelian varieties

Author: Maria Sabitova
Journal: Trans. Amer. Math. Soc. 359 (2007), 4259-4284
MSC (2000): Primary 11G10; Secondary 11F80, 11G40, 11R32
Published electronically: April 11, 2007
MathSciNet review: 2309184
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize a theorem of D. Rohrlich concerning root numbers of elliptic curves over number fields. Our result applies to arbitrary abelian varieties. Namely, under certain conditions which naturally extend the conditions used by D. Rohrlich, we show that the root number $ W(A,\tau)$ associated to an abelian variety $ A$ over a number field $ F$ and a complex finite-dimensional irreducible representation $ \tau$ of $ \operatorname{Gal}(\overline{F}/F)$ with real-valued character is equal to $ 1$. We also show that our result is consistent with a refined version of the conjecture of Birch and Swinnerton-Dyer.

References [Enhancements On Off] (What's this?)

  • 1. C. Chevalley, Théorie des groupes de Lie III (Hermann, Paris, 1955).MR 0068552 (16:901a)
  • 2. G. Faltings and C.-L. Chai, Degeneration of abelian varieties (Springer-Verlag, Berlin, 1990).MR 1083353 (92d:14036)
  • 3. J. S. Milne, Abelian varieties, Arithmetic Geometry (Springer, New York, 1986), 103-150.MR 0861974
  • 4. M. Raynaud, 1-motifs et monodromie géométrique, Astérisque 223 (1994), 295-319.MR 1293976 (95h:14020)
  • 5. D. E. Rohrlich, The vanishing of certain Rankin-Selberg convolutions, Automorphic Forms and Analytic Number Theory (Montréal, PQ, 1989), 123-133.MR 1111015 (92d:11051)
  • 6. D. E. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic Curves and Related Topics (CRM Proc. Lecture Notes, 4, Amer. Math. Soc., Providence, RI, 1994), 125-157.MR 1260960 (95a:11054)
  • 7. D. E. Rohrlich, Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), 311-349. MR 1387669 (97m:11075)
  • 8. J.-P. Serre, Linear representations of finite groups (Springer-Verlag, New York-Heidelberg, 1977).MR 0450380 (56:8675)
  • 9. J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517. MR 0236190 (38:4488)
  • 10. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. MR 0206004 (34:5829)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G10, 11F80, 11G40, 11R32

Retrieve articles in all journals with MSC (2000): 11G10, 11F80, 11G40, 11R32

Additional Information

Maria Sabitova
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Address at time of publication: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Keywords: Abelian variety, root number, Weil-Deligne group.
Received by editor(s): May 6, 2005
Received by editor(s) in revised form: July 21, 2005
Published electronically: April 11, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society