Free interpolation by nonvanishing analytic functions

Authors:
Konstantin Dyakonov and Artur Nicolau

Journal:
Trans. Amer. Math. Soc. **359** (2007), 4449-4465

MSC (2000):
Primary 46J15, 30D50, 30H05

Published electronically:
March 20, 2007

MathSciNet review:
2309193

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We are concerned with interpolation problems in where the values prescribed and the function to be found are both zero-free. More precisely, given a sequence in the unit disk, we ask whether there exists a nontrivial minorant (i.e., a sequence of positive numbers bounded by 1 and tending to 0) such that every interpolation problem has a nonvanishing solution whenever for all . The sequences with this property are completely characterized. Namely, we identify them as `` thin" sequences, a class that arose earlier in Wolff's work on free interpolation in VMO.

**1.**L. Carleson and J. B. Garnett,*Interpolating sequences and separation properties*, J. Anal. Math.**28**(1975), 273-299.**2.**Konstantin M. Dyakonov,*Moment problems for bounded functions*, Comm. Anal. Geom.**2**(1994), no. 4, 533–562. MR**1336894**, 10.4310/CAG.1994.v2.n4.a2**3.**J. P. Earl,*On the interpolation of bounded sequences by bounded functions*, J. London Math. Soc. (2)**2**(1970), 544–548. MR**0284588****4.**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****5.**Pamela Gorkin and Raymond Mortini,*Asymptotic interpolating sequences in uniform algebras*, J. London Math. Soc. (2)**67**(2003), no. 2, 481–498. MR**1956148**, 10.1112/S0024610702004039**6.**Andreas Hartmann, Xavier Massaneda, Artur Nicolau, and Pascal Thomas,*Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants*, J. Funct. Anal.**217**(2004), no. 1, 1–37. MR**2097605**, 10.1016/j.jfa.2004.02.015**7.**Peter W. Jones,*Estimates for the corona problem*, J. Funct. Anal.**39**(1980), no. 2, 162–181. MR**597809**, 10.1016/0022-1236(80)90011-7**8.**Paul Koosis,*Carleson’s interpolation theorem deduced from a result of Pick*, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., vol. 113, Birkhäuser, Basel, 2000, pp. 151–162. MR**1771759****9.**Artur Nicolau,*Interpolating Blaschke products solving Pick-Nevanlinna problems*, J. Anal. Math.**62**(1994), 199–224. MR**1269205**, 10.1007/BF02835954**10.**Carl Sundberg and Thomas H. Wolff,*Interpolating sequences for 𝑄𝐴_{𝐵}*, Trans. Amer. Math. Soc.**276**(1983), no. 2, 551–581. MR**688962**, 10.1090/S0002-9947-1983-0688962-3**11.**T. Wolff,*Some theorems on vanishing mean oscillation*, Thesis, Univ. of California, Berkeley, California, 1979.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
46J15,
30D50,
30H05

Retrieve articles in all journals with MSC (2000): 46J15, 30D50, 30H05

Additional Information

**Konstantin Dyakonov**

Affiliation:
ICREA and Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain

Email:
dyakonov@mat.ub.es

**Artur Nicolau**

Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

Email:
artur@mat.uab.es

DOI:
http://dx.doi.org/10.1090/S0002-9947-07-04186-4

Keywords:
Nonvanishing analytic functions,
thin interpolating sequences

Received by editor(s):
October 11, 2004

Received by editor(s) in revised form:
October 1, 2005

Published electronically:
March 20, 2007

Additional Notes:
Both authors were supported by the European Community’s Human Potential Program under contract HPRN-CT-2000-00116 (Analysis and Operators). The first author was also supported by DGICYT Grant MTM2005-08984-C02-02, CIRIT Grant 2005-SGR-00611, Grant 02-01-00267 from the Russian Foundation for Fundamental Research, and by the Ramón y Cajal program (Spain). The second author was supported by DGICYT Grant MTM2005-00544 and CIRIT Grant 2005-SGR-00774.

Article copyright:
© Copyright 2007
American Mathematical Society