Strongly singular convolution operators on the Heisenberg group
Author:
Neil Lyall
Journal:
Trans. Amer. Math. Soc. 359 (2007), 44674488
MSC (2000):
Primary 42B20, 43A80
Published electronically:
April 16, 2007
MathSciNet review:
2309194
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the mapping properties of a model class of strongly singular integral operators on the Heisenberg group ; these are convolution operators on whose kernels are too singular at the origin to be of CalderónZygmund type. This strong singularity is compensated for by introducing a suitably large oscillation. Our results are obtained by utilizing the group Fourier transform and uniform asymptotic forms for Laguerre functions due to Erdélyi.
 1.
Richard
Askey and Stephen
Wainger, Mean convergence of expansions in Laguerre and Hermite
series, Amer. J. Math. 87 (1965), 695–708. MR 0182834
(32 #316)
 2.
A.
Erdélyi, Asymptotic forms for Laguerre polynomials, J.
Indian Math. Soc. (N.S.) 24 (1960), 235–250 (1961).
MR
0123751 (23 #A1073)
 3.
Charles
Fefferman, Inequalities for strongly singular convolution
operators, Acta Math. 124 (1970), 9–36. MR 0257819
(41 #2468)
 4.
C.
Fefferman and E.
M. Stein, 𝐻^{𝑝} spaces of several variables,
Acta Math. 129 (1972), no. 34, 137–193. MR 0447953
(56 #6263)
 5.
C.
L. Frenzen and R.
Wong, Uniform asymptotic expansions of Laguerre polynomials,
SIAM J. Math. Anal. 19 (1988), no. 5,
1232–1248. MR 957682
(89k:33012), http://dx.doi.org/10.1137/0519087
 6.
Daryl
Geller, Fourier analysis on the Heisenberg group, Proc. Nat.
Acad. Sci. U.S.A. 74 (1977), no. 4, 1328–1331.
MR
0486312 (58 #6069)
 7.
I.
I. Hirschman Jr., On multiplier transformations, Duke Math. J
26 (1959), 221–242. MR 0104973
(21 #3721)
 8.
N. Lyall, A class of strongly singular Radon transforms on the Heisenberg group, to appear in Proc. of Edin. Math. Soc.
 9.
Elias
M. Stein, Harmonic analysis: realvariable methods, orthogonality,
and oscillatory integrals, Princeton Mathematical Series,
vol. 43, Princeton University Press, Princeton, NJ, 1993. With the
assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
(95c:42002)
 10.
Elias
M. Stein and Guido
Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical
Series, No. 32. MR 0304972
(46 #4102)
 11.
Sundaram
Thangavelu, Harmonic analysis on the Heisenberg group,
Progress in Mathematics, vol. 159, Birkhäuser Boston, Inc.,
Boston, MA, 1998. MR 1633042
(99h:43001)
 12.
Stephen
Wainger, Special trigonometric series in 𝑘dimensions,
Mem. Amer. Math. Soc. No. 59 (1965), 102. MR 0182838
(32 #320)
 13.
Thomas
H. Wolff, Lectures on harmonic analysis, University Lecture
Series, vol. 29, American Mathematical Society, Providence, RI, 2003.
With a foreword by Charles Fefferman and preface by Izabella Łaba;
Edited by Łaba and Carol Shubin. MR 2003254
(2004e:42002)
 1.
 R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, American J. Math. 87 (1965), 695708. MR 0182834 (32:316)
 2.
 A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235250. MR 0123751 (23:A1073)
 3.
 C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 936. MR 0257819 (41:2468)
 4.
 C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137193. MR 0447953 (56:6263)
 5.
 C. L. Frenzen and R. Wong, Uniform asymptotic expansions of Laguerre polynomials, SIAM J. Math. Anal. 19 (1988), 12321248. MR 957682 (89k:33012)
 6.
 D. Geller, Fourier analysis on the Heisenberg group, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 13281331. MR 0486312 (58:6069)
 7.
 I. I. Hirschman, Multiplier Transforms I, Duke Math. J. 26 (1956), 222242. MR 0104973 (21:3721)
 8.
 N. Lyall, A class of strongly singular Radon transforms on the Heisenberg group, to appear in Proc. of Edin. Math. Soc.
 9.
 E. M. Stein, Harmonic analysis: Realvariable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993. MR 1232192 (95c:42002)
 10.
 E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971. MR 0304972 (46:4102)
 11.
 S. Thangavelu, Harmonic analysis on the Heisenberg group, Birkhäuser, Boston, 1998. MR 1633042 (99h:43001)
 12.
 S. Wainger, Special trigonometric series in dimensions, Memoirs of the AMS 59, American Math. Soc., 1965. MR 0182838 (32:320)
 13.
 T. H. Wolff, Lectures on harmonic analysis, University Lecture Series 29, American Math. Soc., 2003. MR 2003254 (2004e:42002)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
42B20,
43A80
Retrieve articles in all journals
with MSC (2000):
42B20,
43A80
Additional Information
Neil Lyall
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Address at time of publication:
Department of Mathematics, The University of Georgia, Boyd GSRC, Athens, Georgia 30602
Email:
lyall@math.wisc.edu, lyall@math.uga.edu
DOI:
http://dx.doi.org/10.1090/S0002994707041876
PII:
S 00029947(07)041876
Received by editor(s):
November 12, 2004
Received by editor(s) in revised form:
October 10, 2005
Published electronically:
April 16, 2007
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
