Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz Conjecture
Authors:
E. Mukhin and A. Varchenko
Journal:
Trans. Amer. Math. Soc. 359 (2007), 53835418
MSC (2000):
Primary 82B23, 33C45
Published electronically:
June 4, 2007
MathSciNet review:
2327035
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Jacobi polynomials are polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two irreducible modules. We study sequences of polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two highest weight irreducible modules, with the restriction that the highest weight of one of the modules is a multiple of the first fundamental weight. We describe the recursion which can be used to compute these polynomials. Moreover, we show that the first polynomial in the sequence coincides with the JacobiPiñeiro multiple orthogonal polynomial and others are given by Wronskiantype determinants of JacobiPiñeiro polynomials. As a byproduct we describe a counterexample to the Bethe Ansatz Conjecture for the Gaudin model.
 [ABV]
A.
I. Aptekarev, A.
Branquinho, and W.
Van Assche, Multiple orthogonal polynomials for
classical weights, Trans. Amer. Math. Soc.
355 (2003), no. 10, 3887–3914. MR 1990569
(2004g:33014), http://dx.doi.org/10.1090/S0002994703033300
 [B]
H.
M. Babujian, Offshell Bethe ansatz equations and 𝑁point
correlators in the 𝑆𝑈(2) WZNW theory, J. Phys. A
26 (1993), no. 23, 6981–6990. MR 1253889
(95a:82028)
 [BF]
H.
M. Babujian and R.
Flume, Offshell Bethe ansatz equation for Gaudin magnets and
solutions of KnizhnikZamolodchikov equations, Modern Phys. Lett. A
9 (1994), no. 22, 2029–2039. MR 1290286
(95h:82007), http://dx.doi.org/10.1142/S0217732394001891
 [EH]
David
Eisenbud and Joe
Harris, Limit linear series: basic theory, Invent. Math.
85 (1986), no. 2, 337–371. MR 846932
(87k:14024), http://dx.doi.org/10.1007/BF01389094
 [FFR]
Boris
Feigin, Edward
Frenkel, and Nikolai
Reshetikhin, Gaudin model, Bethe ansatz and critical level,
Comm. Math. Phys. 166 (1994), no. 1, 27–62. MR 1309540
(96e:82012)
 [G]
M.
Gaudin, Diagonalisation d’une classe d’Hamiltoniens de
spin, J. Physique 37 (1976), no. 10,
1089–1098 (French, with English summary). MR 0421442
(54 #9446)
 [IN]
A.
Iserles and S.
P. Nørsett, On the theory of biorthogonal
polynomials, Trans. Amer. Math. Soc.
306 (1988), no. 2,
455–474. MR
933301 (89c:42027), http://dx.doi.org/10.1090/S00029947198809333018
 [K]
Victor
G. Kac, Infinitedimensional Lie algebras, 3rd ed., Cambridge
University Press, Cambridge, 1990. MR 1104219
(92k:17038)
 [MV1]
E.
Mukhin and A.
Varchenko, Critical points of master functions and flag
varieties, Commun. Contemp. Math. 6 (2004),
no. 1, 111–163. MR 2048778
(2005b:17052), http://dx.doi.org/10.1142/S0219199704001288
 [MV2]
Evgeny
Mukhin and Alexander
Varchenko, Norm of a Bethe vector and the Hessian of the master
function, Compos. Math. 141 (2005), no. 4,
1012–1028. MR 2148192
(2006d:82022), http://dx.doi.org/10.1112/S0010437X05001569
 [MV3]
E.
Mukhin and A.
Varchenko, Solutions to the 𝑋𝑋𝑋 type Bethe
ansatz equations and flag varieties, Cent. Eur. J. Math.
1 (2003), no. 2, 238–271. MR 1993451
(2004k:82026), http://dx.doi.org/10.2478/BF02476011
 [P]
L. R. Piñeiro, On simultaneous Padé approximants for a collection of Markov functions, Vestnik Mosk. Univ. Ser., I, no. 2 (1987), 5255 (in Russian); translated in Moscow Univ. Math. Bull. 42, no. 2 (1987), 5255
 [PV]
K. Postelmans, W. Van Assche, Multiple little qJacobi polynomials, math.CA/0403532, 115
 [RSV]
R. Rimanyi, L. Stevens, and A. Varchenko, Combinatorics of rational functions and PoincaréBirkhoffWitt expansions of the canonical valued differential form, math.CO/0407101, 114
 [RV]
Nicolai
Reshetikhin and Alexander
Varchenko, Quasiclassical asymptotics of solutions to the KZ
equations, Geometry, topology, & physics, Conf. Proc. Lecture
Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995,
pp. 293–322. MR 1358621
(96j:32025)
 [Sc]
I. Scherbak, Intersections of Schubert varieties and highest weight vectors in tensor products of representations, math.RT/0409329, 123
 [ScV]
I.
Scherbak and A.
Varchenko, Critical points of functions, 𝔰𝔩₂
representations, and Fuchsian differential equations with only univalued
solutions, Mosc. Math. J. 3 (2003), no. 2,
621–645, 745 (English, with English and Russian summaries). Dedicated
to Vladimir I. Arnold on the occasion of his 65th birthday. MR 2025276
(2004m:34204)
 [Sz]
Gábor
Szegő, Orthogonal polynomials, 3rd ed., American
Mathematical Society, Providence, R.I., 1967. American Mathematical Society
Colloquium Publications, Vol. 23. MR 0310533
(46 #9631)
 [V1]
A.
N. Varčenko, Theorems on the topological equisingularity of
families of algebraic varieties and families of polynomial mappings,
Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 957–1019
(Russian). MR
0337956 (49 #2725)
 [V2]
A.
Varchenko, Critical points of the product of powers of linear
functions and families of bases of singular vectors, Compositio Math.
97 (1995), no. 3, 385–401. MR 1353281
(96j:32053)
 [ABV]
 A. I. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Transactions of the AMS, 355, no. 10, 38873914 MR 1990569 (2004g:33014)
 [B]
 H. Babujian, Offshell Bethe ansatz equations and point correlators in the WZNW theory, J. Phys. A 26 (1993), no. 23, 69816990 MR 1253889 (95a:82028)
 [BF]
 H. Babujian and R. Flume, Offshell Bethe ansatz equation for Gaudin magnets and solutions of KnizhnikZamolodchikov equations, Modern Phys. Lett. A 9 (1994), n. 22, 20292039 MR 1290286 (95h:82007)
 [EH]
 D. Eisenbud, J. Harris, Limit Linear Series: Basic Theory, Inventiones Mathematicae, 85, 337371 MR 846932 (87k:14024)
 [FFR]
 B. Feigin, E. Frenkel, and N. Reshetikhin, Gaudin model, Bethe Ansatz and Critical Level, Commun. Math. Phys. 166 (1994), 2962 MR 1309540 (96e:82012)
 [G]
 M. Gaudin, Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), no. 10, 10891098 MR 0421442 (54:9446)
 [IN]
 A. Iserles, S.P. Norsett, On the theory of biorthogonal polynomials, Transactions of AMS, 306 (1988), 455474 MR 933301 (89c:42027)
 [K]
 V. Kac, Infinitedimensional Lie algebras, Cambridge University Press, 1990 MR 1104219 (92k:17038)
 [MV1]
 E. Mukhin, A. Varchenko, Critical points of master functions and flag varieties, Communications in Contemporary Mathematics (2004), vol. 6, no. 1, 111163 MR 2048778 (2005b:17052)
 [MV2]
 E. Mukhin, A. Varchenko, Norm of a Bethe Vector and the Hessian of the Master Function, Compos. Math. 141 (2005), no. 4, 10121028 MR 2148192 (2006d:82022)
 [MV3]
 E. Mukhin, A. Varchenko, Solutions to the XXX type Bethe Ansatz equations and flag varieties, Centr. Eur. J. Math, vol. 1, no.2 (2003), 238271 MR 1993451 (2004k:82026)
 [P]
 L. R. Piñeiro, On simultaneous Padé approximants for a collection of Markov functions, Vestnik Mosk. Univ. Ser., I, no. 2 (1987), 5255 (in Russian); translated in Moscow Univ. Math. Bull. 42, no. 2 (1987), 5255
 [PV]
 K. Postelmans, W. Van Assche, Multiple little qJacobi polynomials, math.CA/0403532, 115
 [RSV]
 R. Rimanyi, L. Stevens, and A. Varchenko, Combinatorics of rational functions and PoincaréBirkhoffWitt expansions of the canonical valued differential form, math.CO/0407101, 114
 [RV]
 N. Reshetikhin, A. Varchenko, Quasiclassical asymptotics of solutions to the KZ equations, Geometry, topology physics, Conf. Proc. Lecture Notes Geom. Topology, VI, Internat. Press, Cambridge, MA (1995), 293322 MR 1358621 (96j:32025)
 [Sc]
 I. Scherbak, Intersections of Schubert varieties and highest weight vectors in tensor products of representations, math.RT/0409329, 123
 [ScV]
 I. Scherbak, A. Varchenko, Critical point of functions, representations and Fuchsian differential equations with only univalued solutions, Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. Mosc. Math. J. 3 (2003), no. 2, 621645 MR 2025276 (2004m:34204)
 [Sz]
 G. Szego, Orthogonal polynomials, AMS, Providence, Rhode Island, 3d edition, 1967 MR 0310533 (46:9631)
 [V1]
 A. Varchenko, Theorems of Topological Equisingularity of Families of Algebraic Manifold and Polynomial Mappings, Izv. Acad. Sci. USSR, 36 (1972), 9571019 MR 0337956 (49:2725)
 [V2]
 A. Varchenko, Critical points of the product of powers of linear functions and families of bases of singular vectors, Compos. Math., 97 (1995), 385401 MR 1353281 (96j:32053)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
82B23,
33C45
Retrieve articles in all journals
with MSC (2000):
82B23,
33C45
Additional Information
E. Mukhin
Affiliation:
Department of Mathematics, Indiana UniversityPurdue UniversityIndianapolis, 402 N. Blackford St., LD 270, Indianapolis, Indiana 46202
Email:
mukhin@math.iupui.edu
A. Varchenko
Affiliation:
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 275993250
Email:
anv@email.unc.edu
DOI:
http://dx.doi.org/10.1090/S0002994707042171
PII:
S 00029947(07)042171
Received by editor(s):
May 17, 2005
Received by editor(s) in revised form:
September 15, 2005
Published electronically:
June 4, 2007
Additional Notes:
The research of the first author was supported in part by NSF grant DMS0140460.
The research of the second author was supported in part by NSF grant DMS0244579.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
