A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface

Author:
Yunyan Yang

Journal:
Trans. Amer. Math. Soc. **359** (2007), 5761-5776

MSC (2000):
Primary 58J05; Secondary 46E35

Published electronically:
July 3, 2007

MathSciNet review:
2336305

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a sharp form of the Moser-Trudinger inequality is established on a compact Riemannian surface via the method of blow-up analysis, and the existence of an extremal function for such an inequality is proved.

**1.**Adimurthi and O. Druet,*Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality*, Comm. Partial Differential Equations**29**(2004), no. 1-2, 295–322. MR**2038154**, 10.1081/PDE-120028854**2.**Haïm Brezis and Frank Merle,*Uniform estimates and blow-up behavior for solutions of -Δ𝑢=𝑉(𝑥)𝑒^{𝑢} in two dimensions*, Comm. Partial Differential Equations**16**(1991), no. 8-9, 1223–1253. MR**1132783**, 10.1080/03605309108820797**3.**Lennart Carleson and Sun-Yung A. Chang,*On the existence of an extremal function for an inequality of J. Moser*, Bull. Sci. Math. (2)**110**(1986), no. 2, 113–127 (English, with French summary). MR**878016****4.**Wen Xiong Chen and Congming Li,*Classification of solutions of some nonlinear elliptic equations*, Duke Math. J.**63**(1991), no. 3, 615–622. MR**1121147**, 10.1215/S0012-7094-91-06325-8**5.**Weiyue Ding, Jürgen Jost, Jiayu Li, and Guofang Wang,*The differential equation Δ𝑢=8𝜋-8𝜋ℎ𝑒^{𝑢} on a compact Riemann surface*, Asian J. Math.**1**(1997), no. 2, 230–248. MR**1491984**, 10.4310/AJM.1997.v1.n2.a3**6.**Olivier Druet and Emmanuel Hebey,*The 𝐴𝐵 program in geometric analysis: sharp Sobolev inequalities and related problems*, Mem. Amer. Math. Soc.**160**(2002), no. 761, viii+98. MR**1938183**, 10.1090/memo/0761**7.**José F. Escobar and Richard M. Schoen,*Conformal metrics with prescribed scalar curvature*, Invent. Math.**86**(1986), no. 2, 243–254. MR**856845**, 10.1007/BF01389071**8.**Martin Flucher,*Extremal functions for the Trudinger-Moser inequality in 2 dimensions*, Comment. Math. Helv.**67**(1992), no. 3, 471–497. MR**1171306**, 10.1007/BF02566514**9.**Luigi Fontana,*Sharp borderline Sobolev inequalities on compact Riemannian manifolds*, Comment. Math. Helv.**68**(1993), no. 3, 415–454. MR**1236762**, 10.1007/BF02565828**10.**Yuxiang Li,*Moser-Trudinger inequality on compact Riemannian manifolds of dimension two*, J. Partial Differential Equations**14**(2001), no. 2, 163–192. MR**1838044****11.**Yuxiang Li and Pan Liu,*A Moser-Trudinger inequality on the boundary of a compact Riemann surface*, Math. Z.**250**(2005), no. 2, 363–386. MR**2178789**, 10.1007/s00209-004-0756-7**12.**Kai-Ching Lin,*Extremal functions for Moser’s inequality*, Trans. Amer. Math. Soc.**348**(1996), no. 7, 2663–2671. MR**1333394**, 10.1090/S0002-9947-96-01541-3**13.**P.-L. Lions,*The concentration-compactness principle in the calculus of variations. The limit case. I*, Rev. Mat. Iberoamericana**1**(1985), no. 1, 145–201. MR**834360**, 10.4171/RMI/6**14.**J. Moser,*A sharp form of an inequality by N. Trudinger*, Indiana Univ. Math. J.**20**(1970/71), 1077–1092. MR**0301504****15.**Richard Schoen,*Conformal deformation of a Riemannian metric to constant scalar curvature*, J. Differential Geom.**20**(1984), no. 2, 479–495. MR**788292****16.**Michael Struwe,*Positive solutions of critical semilinear elliptic equations on non-contractible planar domains*, J. Eur. Math. Soc. (JEMS)**2**(2000), no. 4, 329–388. MR**1796963**, 10.1007/s100970000023**17.**Neil S. Trudinger,*On imbeddings into Orlicz spaces and some applications*, J. Math. Mech.**17**(1967), 473–483. MR**0216286**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
58J05,
46E35

Retrieve articles in all journals with MSC (2000): 58J05, 46E35

Additional Information

**Yunyan Yang**

Affiliation:
Department of Mathematics, Information School, Renmin University of China, Beijing 100872, People’s Republic of China

Email:
yunyan_yang2002@yahoo.com.cn

DOI:
http://dx.doi.org/10.1090/S0002-9947-07-04272-9

Keywords:
Moser-Trudinger inequality,
blow-up analysis,
extremal function

Received by editor(s):
June 7, 2005

Published electronically:
July 3, 2007

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.