Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ R$-equivalence in adjoint classical groups over fields of virtual cohomological dimension $ 2$


Authors: Amit Kulshrestha and R. Parimala
Journal: Trans. Amer. Math. Soc. 360 (2008), 1193-1221
MSC (2000): Primary 20G15, 14G05
DOI: https://doi.org/10.1090/S0002-9947-07-04300-0
Published electronically: October 23, 2007
MathSciNet review: 2357694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a field of characteristic not $ 2$ whose virtual cohomological dimension is at most $ 2$. Let $ G$ be a semisimple group of adjoint type defined over $ F$. Let $ RG(F)$ denote the normal subgroup of $ G(F)$ consisting of elements $ R$-equivalent to identity. We show that if $ G$ is of classical type not containing a factor of type $ D_n$, $ G(F)/RG(F) = 0$. If $ G$ is a simple classical adjoint group of type $ D_n$, we show that if $ F$ and its multi-quadratic extensions satisfy strong approximation property, then $ G(F)/RG(F) = 0$. This leads to a new proof of the $ R$-triviality of $ F$-rational points of adjoint classical groups defined over number fields.


References [Enhancements On Off] (What's this?)

  • [A1] Arason J., Cohomologische Invarianten quadratischer Formen, J. Algebra 36(1975), pp 448 - 491. MR 0389761 (52:10592)
  • [A2] Arason J., A proof of Merkurjev's theorem, Quadratic and hermitian forms, CMS Conference Proceedings 4 (1984), pp 121 - 130.MR 0776449 (86f:11029)
  • [AEJ] Arason J., Elman R. and Jacob B., Fields of cohomological $ 2$-dimension three, Math. Ann. 274 (1986), pp 649 - 657.MR 0848510 (87m:12006)
  • [Ar] Artin M., Dimension cohomologique: premiers résultats, Théorie des Topos et Cohomologie Etale des Schémes, Lecture Notes in Mathematics 305(1963-64), pp 43 - 63.
  • [B] Bartels H.-J., Invarianten hermitescher Formen über Schiefkörpern, Math. Ann. 215(1975), pp 269 - 288. MR 0419353 (54:7374)
  • [BP1] Bayer-Fluckiger E. and Parimala R., Galois cohomology of classical groups over fields of cohomological dimension $ \leq 2$, Inventiones mathematicae 122(1995), pp 195-229. MR 1358975 (96i:11042)
  • [BP2] Bayer-Fluckiger E. and Parimala R., Classical groups and the Hasse principle, Ann. of Math. 147(1998), pp 651-693. MR 1637659 (99g:11055)
  • [BMPS] Bayer-Fluckiger E., Monsurrò M., Parimala R. and Schoof R., Trace forms of $ G$-Galois algebras in virtual cohomological dimension $ 1$ and $ 2$, Pacific J. Math 217(2004), pp 29 - 43. MR 2105764 (2005i:12005)
  • [CM] Chernousov V. and Merkurjev A., $ R$-equivalence and Special Unitary Groups, J. Algebra 209(1998), pp 175 - 198.MR 1652122 (99m:20101)
  • [CTS] Colliot-Thélène J.-L. and Sansuc J.-J., La $ R$-équivalence sur les tores, Ann. scient. Éc. Norm. Sup., $ 4^e$ série 10(1977), pp 175-230.MR 0450280 (56:8576)
  • [CTGP] Colliot-Thélène J.-L., Gille P. and Parimala R., Arithmetic of linear algebraic groups over $ 2$-dimensional geometric fields, Duke Math J. 121 (2004), pp 285 - 341. MR 2034644 (2005f:11063)
  • [CTSk] Colliot-Thélène J.-L. and Skorobogatov J.-L., Groupe de Chow des zéro-cycles sur les fibrés en quadratiques, K-Theory 7(1993), pp 477 - 500.MR 1255062 (95c:14012)
  • [EL] Elman R. and Lam T.Y., Classification theorems for quadratic forms over fields, Comment. Math. Helv. 49(1974), pp 373 - 381.MR 0351997 (50:4485)
  • [ELP] Elman R., Lam T.Y. and Prestel A., On some Hasse principles over formally real fields, Math. Z. 134(1973), pp 291 - 301.MR 0330045 (48:8384)
  • [G] Gille P., La $ R$-équivalence sur les groupes algébriques réductifs, Publications mathématiques de l'IHÉS. 86 (1997), pp 199 - 235.MR 1608570 (99c:20066)
  • [Ga] Garibaldi S., Notes on $ RG(F) = G(F)$ for $ G$ adjoint of classical $ D_4$ type, Unpublished, (2003).
  • [KMRT] Knus M.-A., Merkurjev A.S., Rost M. and Tignol J.-P., The Book of Involutions, AMS Colloquium Publication 44, 1998. MR 1632779 (2000a:16031)
  • [KS] Kaito K. and Saito S., Unramified class field theory of arithmetical surfaces, Ann. of Math. 118(1983), pp 241 - 275. MR 0717824 (86c:14006)
  • [L] Lam T.Y., Algebraic Theory of Quadratic Forms, W.A. Benjamin, 1973.MR 0396410 (53:277)
  • [Ma] Manin Yu. I., Cubic forms, Amsterdam, North-Holland, 1974.MR 0460349 (57:343)
  • [Me1] Merkurjev A.S., On the norm residue symbol of degree $ 2$, Doklady Akad. Nauk SSSR 261(1981), pp 542 - 547, English translation: Soviet Math. Dokl. 24(1981), pp 546 - 551. MR 0638926 (83h:12015)
  • [Me2] Merkurjev A.S., $ R$-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Publications mathématiques de l'IHÉS. 84 (1996), pp 189-213. MR 1441008 (98d:14055)
  • [Me3] Merkurjev A.S., Rost invariants of simply connected algebraic groups (with a section by Skip Garibaldi), Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, 101-158, Amer. Math. Soc., Providence, RI, 2003. MR 1999385
  • [MPT] Merkurjev A.S., Parimala R. and Tignol J.-P., Invariants of quasi-trivial tori and the Rost invariant, St. Petersburg Math. J. 14 (2003), pp 791 - 821. MR 1970336 (2004c:11045)
  • [MT] Merkurjev A.S. and Tignol J.-P., The multipliers of similitudes and the Brauer group of homogeneous varieties, J. reine angew. Math. 461 (1995), pp 13-47.MR 1324207 (96c:20083)
  • [MH] Milnor J. and Husemoller D., Symmetric bilinear forms, Springer-Verlag, 1973.MR 0506372 (58:22129)
  • [PR] Platonov V. and Rapinchuk A., Algebraic groups and number theory, Academic Press Inc., 1994.MR 1278263 (95b:11039)
  • [P] Prestel A., Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133(1973), pp 319 - 342. MR 0337913 (49:2682)
  • [S] Sansuc J.-J., Groupe de Brauer et arithmétique des groupes algébriquessur un corps de nombres, J. reine angew. Math. 327 (1984), pp 13-81.MR 0631309 (83d:12010)
  • [Sc] Scharlau W., Quadratic and Hermitian forms, Springer-Verlag, 1985.MR 0770063 (86k:11022)
  • [Se] Serre J-P., Galois Cohomology, Springer-Verlag, 1997. MR 1466966 (98g:12007)
  • [T] Tits J., Classification of algebraic semisimple groups, Algebraic groups and discontinuous subgroups (edited by Borel and Mastow), pp 33-62, American Mathematical Society, 1966. MR 0224710 (37:309)
  • [V] Voskresenski{\u{\i\/}}\kern.15em V.E., Algebraic groups and their birational invariants, Translations of Mathematical Monographs 179, American Mathematical Society, 1998.MR 1634406 (99g:20090)
  • [VK] Voskresenski{\u{\i\/}}\kern.15em V.E. and Klyachko A.A., Toroidal Fano varieties and root system, Math. USSR Izvestiya 24(1985), pp 221 - 244.MR 0740791 (85k:14024)
  • [W] Wadsworth A.R., Merkurjev's elementary proof of Merkurjev's theorem, Applications of algebraic K-Theory to algebraic geometry and number theory, Contemp. Math, Vol 55.2, American Mathematical Society, 1986, pp 741 - 776.MR 0862663 (88b:11078)
  • [We] Weil A., Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24(1960), pp 589 - 623.MR 0136682 (25:147)
  • [Y] Yanchevski{\u{\i\/}}\kern.15em V.I., Whitehead groups and groups of $ R$-equivalence classes of linear algebraic groups of non-commutative classical type over some virtual fields. Algebraic groups and arithmetic, Tata Inst. Fund. Res. Mumbai, 2004, pp 491-505. MR 2094122 (2005h:20106)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G15, 14G05

Retrieve articles in all journals with MSC (2000): 20G15, 14G05


Additional Information

Amit Kulshrestha
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India 400005
Email: amitk@math.tifr.res.in

R. Parimala
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India 400005
Address at time of publication: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: parimala@mathcs.emory.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04300-0
Keywords: Adjoint classical groups, $R$-equivalence, algebras with involutions, similitudes
Received by editor(s): July 31, 2005
Published electronically: October 23, 2007
Dedicated: Dedicated to our teacher Professor R. Sridharan on his seventieth birthday.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society