Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integral homology $ 3$-spheres and the Johnson filtration


Author: Wolfgang Pitsch
Journal: Trans. Amer. Math. Soc. 360 (2008), 2825-2847
MSC (2000): Primary 57M99; Secondary 20F38, 20F12
DOI: https://doi.org/10.1090/S0002-9947-08-04208-6
Published electronically: January 4, 2008
MathSciNet review: 2379777
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The mapping class group of an oriented surface $ \Sigma_{g,1}$ of genus $ g$ with one boundary component has a natural decreasing filtration $ \mathcal{M}_{g,1} \supset \mathcal{M}_{g,1}(1) \supset \mathcal{M}_{g,1}(2) \supset \mathcal{M}_{g,1}(3) \supset \cdots$, where $ \mathcal{M}_{g,1}(k)$ is the kernel of the action of $ \mathcal{M}_{g,1}$ on the $ k^{th}$ nilpotent quotient of $ \pi_1(\Sigma_{g,1})$. Using a tree Lie algebra approximating the graded Lie algebra $ \displaystyle \bigoplus_{k} \mathcal{M}_{g,1}(k)/\mathcal{M}_{g,1}(k+1)$ we prove that any integral homology sphere of dimension $ 3$ has for some $ g$ a Heegaard decomposition of the form $ M = \mathcal{H}_g \coprod_{\iota_g \phi} - \mathcal{H}_g$, where $ \phi \in \mathcal{M}_{g,1}(3)$ and $ \iota_g$ is such that $ \mathcal{H}_g \coprod_{\iota_g} - \mathcal{H}_g= S^3$. This proves a conjecture due to S. Morita and shows that the ``core'' of the Casson invariant is indeed the Casson invariant.


References [Enhancements On Off] (What's this?)

  • 1. D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423-472. MR 1318886 (97d:57004)
  • 2. R. Craggs, A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. Amer. Math. Soc. 57 (1976), no. 1, 143-147. MR 0410749 (53:14495)
  • 3. S. Garoufalidis and J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 173-203. MR 2131016 (2005m:57017)
  • 4. H. B. Griffiths, Automorphisms of a $ 3$-dimensional handlebody, Abh. Math. Sem. Univ. Hamburg 26 (1963/1964), 191-210. MR 0159313 (28:2530)
  • 5. N. Habegger and G. Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000), no. 6, 1253-1289. MR 1783857 (2002b:57011)
  • 6. N. Habegger and W. Pitsch, Tree level Lie algebra structures of perturbative invariants, J. Knot Theory Ramifications 12 (2003), no. 3, 333-345. MR 1983089 (2004e:57017)
  • 7. Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994, Corrected reprint of the 1976 original. MR 1336822 (96c:57001)
  • 8. D. Johnson, The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology 24 (1985), no. 2, 113-126. MR 793178 (86i:57011)
  • 9. J. Levine, Addendum and correction to: ``Homology cylinders: an enlargement of the mapping class group'' Algebr. Geom. Topol. 1 (2001), 243-270; Algebr. Geom. Topol. 2 (2002), 1197-1204 (electronic). MR 1943338 (2003k:57022); MR 1823501 (2002m:57020)
  • 10. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, second ed., Dover Publications Inc., Mineola, NY, 2004, Presentations of groups in terms of generators and relations. MR 2109550 (2005h:20052)
  • 11. S. Morita, Casson's invariant for homology $ 3$-spheres and characteristic classes of surface bundles. I, Topology 28 (1989), no. 3, 305-323. MR 1014464 (90h:57020)
  • 12. -, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), no. 3, 699-726. MR 1224104 (94d:57003)
  • 13. J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen i, Acta Math 50 (1927), 189-358.
  • 14. -, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen II, Acta Math 53 (1929), 1-76.
  • 15. -, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen III, Acta Math 58 (1931), 87-167.
  • 16. W. Pitsch, Une construction intrinsèque du cœur de l'invariant de Casson, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 6, 1741-1761. MR 1871288 (2002k:57034)
  • 17. -, Extensions verselles et automorphismes des groupes nilpotents libres, J. Algebra 249 (2002), no. 2. MR 1901170 (2003h:20047)
  • 18. K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg (1933), 189-194.
  • 19. J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), no. 1, 88-111. MR 1501673
  • 20. S. Suzuki, On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977), no. 1, 111-124. MR 0433433 (55:6409)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M99, 20F38, 20F12

Retrieve articles in all journals with MSC (2000): 57M99, 20F38, 20F12


Additional Information

Wolfgang Pitsch
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
Email: pitsch@mat.uab.es

DOI: https://doi.org/10.1090/S0002-9947-08-04208-6
Received by editor(s): November 7, 2005
Published electronically: January 4, 2008
Additional Notes: The author was supported by MEC grant MTM2004-06686 and by the program Ramón y Cajal, MEC, Spain
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society