Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized stationary random fields with linear regressions - an operator approach


Authors: Wojciech Matysiak and Pawel J. Szablowski
Journal: Trans. Amer. Math. Soc. 360 (2008), 3909-3919
MSC (2000): Primary 60G12; Secondary 60G10, 47B35
DOI: https://doi.org/10.1090/S0002-9947-08-04409-7
Published electronically: February 27, 2008
MathSciNet review: 2386251
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence, $ L^2$-stationarity and linearity of conditional expectations $ \mathbb{E}[X_k\vert\ldots,X_{k-2},X_{k-1}]$ of square integrable random sequences $ \mathbf{X}= \left( X_{k}\right)_{k\in\mathbb{Z}}$ satisfying

$\displaystyle \mathbb{E}[X_k\vert{\ldots,X_{k-2},X_{k-1},X_{k+1},X_{k+2},\ldots}]=\sum_{j=1} ^\infty b_j\left(X_{k-j}+X_{k+j}\right)$

for a real sequence $ \left(b_n\right)_{n\in\mathbb{N}}$ is examined. The analysis is reliant upon the use of Laurent and Toeplitz operator techniques.


References [Enhancements On Off] (What's this?)

  • 1. Albrecht Böttcher and Bernd Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999. MR 1724795 (2001b:47043)
  • 2. Włodzimierz Bryc, Stationary Markov chains with linear regressions, Stochastic Process. Appl. 93 (2001), no. 2, 339-348. MR 1828779 (2002d:60058)
  • 3. -, Stationary random fields with linear regressions, Ann. Probab. 29 (2001), no. 1, 504-519. MR 1825162 (2002d:60014)
  • 4. Włodzimierz Bryc, Wojciech Matysiak, and Jacek Wesołowski, Quadratic harnesses, $ q$-commutations, and orthogonal martingale polynomials, Trans. Amer. Math. Soc. 359 (2007), 5449-5483. MR 2327037
  • 5. Włodzimierz Bryc and Jacek Wesołowski, Conditional moments of $ q$-Meixner processes, Probab. Theory Related Fields 131 (2005), no. 3, 415-441. MR 2123251
  • 6. J. M. Hammersley, Harnesses, Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences, Univ. California Press, Berkeley, Calif., 1967, pp. 89-117. MR 0224144 (36:7190)
  • 7. J. F. C. Kingman, Random variables with unsymmetrical linear regressions, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 2, 355-365. MR 795900 (87b:60021)
  • 8. -, The construction of infinite collections of random variables with linear regressions, Adv. in Appl. Probab. (1986), no. suppl., 73-85. MR 868509 (88b:60118)
  • 9. Roger Mansuy and Marc Yor, Harnesses, Lévy bridges and Monsieur Jourdain, Stochastic Process. Appl. 115 (2005), no. 2, 329-338. MR 2111197 (2005m:60104)
  • 10. Wojciech Matysiak and Paweł J. Szabłowski, A few remarks on Bryc's paper on random fields with linear regressions, Ann. Probab. 30 (2002), no. 3, 1486-1491. MR 1920274 (2003e:60111)
  • 11. -, Bryc's random fields: The existence and distributions analysis, Preprint, 2003.
  • 12. Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)
  • 13. Otto Toeplitz, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen, Math. Ann. 70 (1911), no. 3, 351-376. MR 1511625
  • 14. David Williams, Some basic theorems on harnesses, Stochastic analysis (a tribute to the memory of Rollo Davidson) (D.G. Kendall and E.F. Harding, eds.), Wiley, London, 1973, pp. 349-363. MR 0362565 (50:15005)
  • 15. -, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402 (93d:60002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60G12, 60G10, 47B35

Retrieve articles in all journals with MSC (2000): 60G12, 60G10, 47B35


Additional Information

Wojciech Matysiak
Affiliation: Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Pl. Politechniki 1, 00-661 Warszawa, Poland – and – Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
Email: matysiak@mini.pw.edu.pl

Pawel J. Szablowski
Affiliation: Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Pl. Politechniki 1, 00-661 Warszawa, Poland
Email: pszablowski@elka.pw.edu.pl

DOI: https://doi.org/10.1090/S0002-9947-08-04409-7
Keywords: Linear regressions, stationary random sequences, Laurent operators, Toeplitz operators, harnesses.
Received by editor(s): July 21, 2005
Received by editor(s) in revised form: August 16, 2006
Published electronically: February 27, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society