Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L^p$ properties for Gaussian random series


Authors: Antoine Ayache and Nikolay Tzvetkov
Journal: Trans. Amer. Math. Soc. 360 (2008), 4425-4439
MSC (2000): Primary 35Q55, 37K05, 37L50, 60G15, 60G50
DOI: https://doi.org/10.1090/S0002-9947-08-04456-5
Published electronically: March 12, 2008
MathSciNet review: 2395179
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ c=(c_n)_{n\in\mathbb{N}^\star}$ be an arbitrary sequence of $ l^2(\mathbb{N}^{\star})$ and let $ F_c (\omega)$ be a random series of the type

$\displaystyle F_c (\omega)=\sum_{n\in\mathbb{N}^\star}g_n (\omega) c_n e_n , $

where $ (g_n)_{n\in\mathbb{N}^*}$ is a sequence of independent $ {\mathcal N}_{\mathbb{C}}(0,1)$ Gaussian random variables and $ (e_n)_{n\in\mathbb{N}^\star}$ an orthonormal basis of $ L^2(Y,{\mathcal M},\mu)$ (the finite measure space $ (Y,{\mathcal M},\mu)$ being arbitrary). By using the equivalence of Gaussian moments and an integrability theorem due to Fernique, we show that a necessary and sufficient condition for $ F_c (\omega)$ to belong to $ L^p(Y,{\mathcal M},\mu)$, $ p\in [2,\infty)$ for any $ c\in l^2 (\mathbb{N}^\star)$ almost surely is that $ \sup_{n\in\mathbb{N}^\star}\Vert e_n\Vert _{L^p(Y,{\mathcal M},\mu)}<\infty$. One of the main motivations behind this result is the construction of a nontrivial Gibbs measure invariant under the flow of the cubic defocusing nonlinear Schrödinger equation posed on the open unit disc of $ \mathbb{R}^2$.


References [Enhancements On Off] (What's this?)

  • 1. X. Fernique, Regularité des trajectoires des fonctions aléatoires Gausiennes, Ecole d'été St. Flour 1974. MR 0413238 (54:1355)
  • 2. L. Schwartz, Méthodes mathématiques pour les sciences physiques, Hermann, Paris 1961. MR 0143360 (26:919)
  • 3. E. Stein, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press 1977. MR 1970295 (2004a:42001)
  • 4. C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math J. 53 (1986) 43-65. MR 835795 (87g:42026)
  • 5. C. Sogge, Concerning the $ L^p$ norms of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988) 123-138. MR 930395 (89d:35131)
  • 6. C. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 1993. MR 1205579 (94c:35178)
  • 7. G. Szegö, Orthogonal polynomials, Colloque. Publications, AMS 1974. MR 0372517 (51:8724)
  • 8. N. Tzvetkov, Invariant measures for the Nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ. 3 (2006), no. 2, 111-160. MR 2227040
  • 9. G. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge Univ. Press, Cambridge, 1944. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q55, 37K05, 37L50, 60G15, 60G50

Retrieve articles in all journals with MSC (2000): 35Q55, 37K05, 37L50, 60G15, 60G50


Additional Information

Antoine Ayache
Affiliation: Laboratoire Paul Painlevé, Bât. M2, Université Lille 1, 59 655 Villeneuve d’Ascq Cedex, France
Email: antoine.ayache@math.univ-lille1.fr

Nikolay Tzvetkov
Affiliation: Laboratoire Paul Painlevé, Bât. M2, Université Lille 1, 59 655 Villeneuve d’Ascq Cedex, France
Email: nikolay.tzvetkov@math.univ-lille1.fr

DOI: https://doi.org/10.1090/S0002-9947-08-04456-5
Keywords: Eigenfunctions, Gaussian random series
Received by editor(s): October 3, 2006
Published electronically: March 12, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society