Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints

Author: Cristina Marcelli
Journal: Trans. Amer. Math. Soc. 360 (2008), 5201-5227
MSC (2000): Primary 49J30, 49J52, 49K30
Published electronically: May 2, 2008
MathSciNet review: 2415071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the classical autonomous constrained variational problem of minimization of $ \int_a^bf(v(t),v'(t)) dt$ in the class $ \Omega:=\{v \in W^{1,1}(a,b):$ $ v(a)=\alpha, v(b)= \beta, v'(t)\ge 0$   a.e. in $ (a,b) \}$, where $ f:[\alpha, \beta]\times [0,+\infty) \to \mathbb{R}$ is a lower semicontinuous, nonnegative integrand, which can be nonsmooth, nonconvex and noncoercive.

We prove a necessary and sufficient condition for the optimality of a trajectory $ v_0\in \Omega$ in the form of a DuBois-Reymond inclusion involving the subdifferential of Convex Analysis. Moreover, we also provide a relaxation result and necessary and sufficient conditions for the existence of the minimum expressed in terms of an upper limitation for the assigned mean slope $ \xi_0=(\beta-\alpha)/(b-a)$. Applications to various noncoercive variational problems are also included.

References [Enhancements On Off] (What's this?)

  • 1. B. Botteron and B. Dacorogna, Existence and non-existence results for non-coercive variational problems and applications in ecology, J. Diff. Eqns. 85 (1990), 214-235. MR 1054549 (91c:92081)
  • 2. B. Botteron and P. Marcellini, A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations, Ann. Inst. H. Poincaré 8 (1991), 197-223. MR 1096604 (92c:49002)
  • 3. G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems, Oxford Lecture Seires in Mathematics and its Applications No. 15, Clarendon Press, Oxford, 1998. MR 1694383 (2001a:49001)
  • 4. P. Celada and S. Perrotta, Existence of minimizers for nonconvex, noncoercive simple interals, SIAM J. Control Optim. 41 (4) (2002), 1118-1140. MR 1972505 (2005c:49002)
  • 5. P. Celada, G. Cupini and M. Guidorzi, A sharp attainment result for nonconvex variational problems, Calc. Var. P.D.E. 20 (3) (2004), 301-328. MR 2062946 (2005g:49007)
  • 6. A. Cellina, The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions, Trans. Amer. Math. Soc. 356 (1) (2003), 415-426. MR 2020039 (2004k:49087)
  • 7. A. Cellina, G. Treu and S. Zagatti, On the minimum problem for a class of non-coercive functionals, J. Diff. Eqs. 127 (1996), 225-262. MR 1387265 (97d:49003)
  • 8. L. Cesari, Optimization Theory and Applications, Springer-Verlag, New York, Heidelberg, Berlin, 1983. MR 688142 (85c:49001)
  • 9. F. H. Clarke, An indirect method in the Calculus of Variations, Trans. Amer. Math. Soc. 336 (2) (1993), 655-673. MR 1118823 (93f:49002)
  • 10. G. Crasta and A. Malusa, Existence results for noncoercive variational problems, SIAM J. Control Optim. 34 (6) (1996), 2064-2076. MR 1416500 (97h:49002)
  • 11. N. Fusco, P. Marcellini and A. Ornelas, Existence of minimizers for some nonconvex one-dimensional integrals, Portugal. Math. 55 (1998), 167-185. MR 1629622 (99e:49002)
  • 12. I.V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, Berlin, 1972. MR 0464021 (57:3958)
  • 13. A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, Stud. Math. Appl., North-Holland Publ. Comp., Amsterdam - New York - Oxford, 1979. MR 528295 (80d:49001b)
  • 14. C. Marcelli, One-dimensional non-coercive problems of the calculus of variations, Ann. Mat. Pura Appl. (IV) CLXXIII (1997), 145-161. MR 1625555 (99d:49003)
  • 15. C. Marcelli, Non-coercive variational problems with constraints on the derivatives, J. Convex Anal. 5 (1) (1998), 1-17. MR 1649429 (2000b:49003)
  • 16. C. Marcelli, Variational problems with non-convex, non-coercive, highly discontinuous integrands: characterization and existence of minimizers, SIAM J. Control Optim., 40 (5) (2002), 1473-1490. MR 1882803 (2002k:49043)
  • 17. C. Marcelli, E. Outkine and M. Sychev, Remarks on necessary conditions for minimizers of one-dimensional variational problems, Nonlin. Anal., 48 (2002), 979-993. MR 1880258 (2002m:49004)
  • 18. P. Marcellini, Nonconvex integrals of the Calculus of Variations, in Methods of nonconvex analysis, Lecture Notes in Math. 1446, A. Cellina ed., Springer, Berlin, 1990, 16-57. MR 1079758 (91j:49002)
  • 19. B. Mordukhovich, Existence theorems in non-convex optimal control, in Calculus of Variations and Optimal Control, Chapman and Hall/CRC Res. Notes Math. 411, Boca Raton, FL, 1999, 173-197. MR 1713863 (2000i:49005)
  • 20. A. Ornelas, Existence of scalar minimizers for nonconvex simple integrals of sum type, J. Math. Anal. Appl. 221 (1998), 559-573. MR 1621754 (99d:49004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 49J30, 49J52, 49K30

Retrieve articles in all journals with MSC (2000): 49J30, 49J52, 49K30

Additional Information

Cristina Marcelli
Affiliation: Department of Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy

Keywords: Constrained variational problems, autonomous Lagrangians, nonsmooth analysis, noncoercive problems, nonconvex problems, necessary and sufficient conditions, DuBois-Reymond condition.
Received by editor(s): November 25, 2004
Received by editor(s) in revised form: June 30, 2006
Published electronically: May 2, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society