Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Semi-complete vector fields of saddle-node type in $ \mathbb{C}^n$


Author: Helena Reis
Journal: Trans. Amer. Math. Soc. 360 (2008), 6611-6630
MSC (2000): Primary 32S65
Published electronically: July 24, 2008
MathSciNet review: 2434302
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the foliations associated to codimension $ 1$ saddle-node vector fields on $ \mathbb{C}^n$, with an isolated singularity, admitting a semi-complete representative. This will be done under some further assumptions that are generic in dimension $ 3$. These singularities play an essential role in the program to classify semi-complete vector fields in dimension $ 3$.


References [Enhancements On Off] (What's this?)

  • 1. J. C. Canille Martins, Contribuição ao estudo local de fluxos holomorfos com ressonância, Ph.D. Thesis, IMPA-CNPq, Brasil (1985)
  • 2. J. C. Canille Martins, Comportement qualitatif des systèmes symétriques, Comptes Rendus de l'Académie des Sciences de Paris, t-301, ser. II, n. 10 (l985)
  • 3. E. Ghys and J.-C. Rebelo, Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 4, 1117–1174 (French, with English and French summaries). MR 1488247 (99a:32059)
  • 4. J. Malmquist, Sur l’étude analytique des solutions d’un système d’équations différentielles dans le voisinage d’un point singulier d’indétermination. I, Acta Math. 73 (1940), 87–129 (French). MR 0003897 (2,289c)
  • 5. B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers, Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975) Lecture Notes in Math., vol. 712, Springer, Berlin, 1979, pp. 77–86 (French). MR 548145 (80k:14019)
  • 6. Jean Martinet and Jean-Pierre Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. 55 (1982), 63–164 (French). MR 672182 (84k:34011)
  • 7. Julio C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 411–428 (French, with English and French summaries). MR 1393520 (97d:32059)
  • 8. Julio C. Rebelo, Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 735–763 (French, with English and French summaries). MR 1838147 (2002e:32044)
  • 9. Julio C. Rebelo, Complete algebraic vector fields on affine surfaces. I, J. Geom. Anal. 13 (2003), no. 4, 669–696. MR 2005159 (2005b:32050), http://dx.doi.org/10.1007/BF02921884
  • 10. H. Reis, Analytic classification of complex differential equations, Ph.D. Thesis, Univ. Porto (2006).
  • 11. Laurent Stolovitch, Classification analytique de champs de vecteurs 1-résonnants de (𝐶ⁿ,0), Asymptotic Anal. 12 (1996), no. 2, 91–143 (French, with French summary). MR 1386227 (98b:32037)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32S65

Retrieve articles in all journals with MSC (2000): 32S65


Additional Information

Helena Reis
Affiliation: Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do Porto, Porto, Portugal
Email: hreis@fep.up.pt

DOI: http://dx.doi.org/10.1090/S0002-9947-08-04516-9
PII: S 0002-9947(08)04516-9
Received by editor(s): March 16, 2005
Received by editor(s) in revised form: March 5, 2007
Published electronically: July 24, 2008
Additional Notes: The author received financial support from Fundação para a Ciência e Tecnologia (FCT) through Centro de Matemática da Universidade do Porto, and from PRODEPIII
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.