Nonlinear stability of rarefaction waves for the compressible NavierStokes equations with large initial perturbation
Authors:
Ran Duan, Hongxia Liu and Huijiang Zhao
Journal:
Trans. Amer. Math. Soc. 361 (2009), 453493
MSC (2000):
Primary 35L65, 35L60
Published electronically:
August 15, 2008
MathSciNet review:
2439413
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The expansion waves for the compressible NavierStokes equations have recently been shown to be nonlinear stable. The nonlinear stability results are called local stability or global stability depending on whether the norm of the initial perturbation is small or not. Up to now, local stability results have been well established. However, for global stability, only partial results have been obtained. The main purpose of this paper is to study the global stability of rarefaction waves for the compressible NavierStokes equations. For this purpose, we introduce a positive parameter in the construction of smooth approximations of the rarefaction wave solutions for the compressible Euler equations so that the quantity ( denotes the strength of the rarefaction waves) is sufficiently large to control the growth induced by the nonlinearity of the system and the interaction of waves from different families. Then by using the energy method together with the continuation argument, we obtain some nonlinear stability results provided that the initial perturbation satisfies certain growth conditions as . Notice that the assumption that the quantity can be chosen to be sufficiently large implies that either the strength of the rarefaction waves is small or the rarefaction waves of different families are separated far enough initially.
 1.
K.
N. Chueh, C.
C. Conley, and J.
A. Smoller, Positively invariant regions for systems of nonlinear
diffusion equations, Indiana Univ. Math. J. 26
(1977), no. 2, 373–392. MR 0430536
(55 #3541)
 2.
Ran
Duan, Xuan
Ma, and Huijiang
Zhao, A case study of global stability of strong rarefaction waves
for 2×2 hyperbolic conservation laws with artificial viscosity,
J. Differential Equations 228 (2006), no. 1,
259–284. MR 2254431
(2007d:35178), http://dx.doi.org/10.1016/j.jde.2006.02.005
 3.
David
Hoff, Global solutions of the equations of onedimensional,
compressible flow with large data and forces, and with differing end
states, Z. Angew. Math. Phys. 49 (1998), no. 5,
774–785. MR 1652200
(99m:35186), http://dx.doi.org/10.1007/s000330050120
 4.
David
Hoff and Joel
Smoller, Solutions in the large for certain nonlinear parabolic
systems, Ann. Inst. H. Poincaré Anal. Non Linéaire
2 (1985), no. 3, 213–235 (English, with French
summary). MR
797271 (87b:35078)
 5.
Ling
Hsiao and Song
Jiang, Nonlinear hyperbolicparabolic coupled systems,
Evolutionary equations. Vol. I, Handb. Differ. Equ., NorthHolland,
Amsterdam, 2004, pp. 287–384. MR 2103699
(2005j:35181)
 6.
Ling
Hsiao and Ronghua
Pan, Zero relaxation limit to centered rarefaction waves for a
ratetype viscoelastic system, J. Differential Equations
157 (1999), no. 1, 20–40. MR 1710012
(2000j:35183), http://dx.doi.org/10.1006/jdeq.1998.3615
 7.
Feimin
Huang, Akitaka
Matsumura, and Zhouping
Xin, Stability of contact discontinuities for the 1D compressible
NavierStokes equations, Arch. Ration. Mech. Anal.
179 (2006), no. 1, 55–77. MR 2208289
(2007a:35119), http://dx.doi.org/10.1007/s0020500503807
 8.
F. M. Huang, Z. P. Xin, and T. Yang, Contact discontinuity with general perturbations for gas motions. Preprint 2004.
 9.
A. M. Ilin and O. A. Oleĭnik, Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Amer. Math. Soc. Transl. Ser. 2 42 (1964), 1923.
 10.
Alan
Jeffrey and Huijiang
Zhao, Global existence and optimal temporal decay estimates for
systems of parabolic conservation laws. I. The onedimensional case,
Appl. Anal. 70 (1998), no. 12, 175–193. MR 1671563
(99m:35102), http://dx.doi.org/10.1080/00036819808840683
 11.
Song
Jiang, Guoxi
Ni, and Wenjun
Sun, Vanishing viscosity limit to rarefaction waves for the
NavierStokes equations of onedimensional compressible heatconducting
fluids, SIAM J. Math. Anal. 38 (2006), no. 2,
368–384 (electronic). MR 2237152
(2007e:35228), http://dx.doi.org/10.1137/050626478
 12.
Song
Jiang and Reinhard
Racke, Evolution equations in thermoelasticity, Chapman &
Hall/CRC Monographs and Surveys in Pure and Applied Mathematics,
vol. 112, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1774100
(2001g:74013)
 13.
Song
Jiang and Ping
Zhang, Global weak solutions to the NavierStokes equations for a
1D viscous polytropic ideal gas, Quart. Appl. Math.
61 (2003), no. 3, 435–449. MR 1999830
(2004e:76092)
 14.
Yoshiyuki
Kagei and Shuichi
Kawashima, Local solvability of an initial boundary value problem
for a quasilinear hyperbolicparabolic system, J. Hyperbolic Differ.
Equ. 3 (2006), no. 2, 195–232. MR 2229854
(2007c:35120), http://dx.doi.org/10.1142/S0219891606000768
 15.
Ja.
I. Kanel′, A model system of equations for the
onedimensional motion of a gas, Differencial′nye Uravnenija
4 (1968), 721–734 (Russian). MR 0227619
(37 #3203)
 16.
S. Kawashima, Systems of a HyperbolicParabolic Composite, with Applications to the Equations of Magnetohydrodynamics. Thesis, Kyoto University, 1985.
 17.
Shuichi
Kawashima and Akitaka
Matsumura, Asymptotic stability of traveling wave solutions of
systems for onedimensional gas motion, Comm. Math. Phys.
101 (1985), no. 1, 97–127. MR 814544
(87h:35035)
 18.
Shuichi
Kawashima, Akitaka
Matsumura, and Kenji
Nishihara, Asymptotic behavior of solutions for the equations of a
viscous heatconductive gas, Proc. Japan Acad. Ser. A Math. Sci.
62 (1986), no. 7, 249–252. MR 868811
(87k:35036)
 19.
Shuichi
Kawashima and Takaaki
Nishida, Global solutions to the initial value problem for the
equations of onedimensional motion of viscous polytropic gases, J.
Math. Kyoto Univ. 21 (1981), no. 4, 825–837. MR 637519
(84d:76042)
 20.
TaiPing
Liu, Shock waves for compressible NavierStokes equations are
stable, Comm. Pure Appl. Math. 39 (1986), no. 5,
565–594. MR
849424 (87j:35247), http://dx.doi.org/10.1002/cpa.3160390502
 21.
TaiPing
Liu and Zhou
Ping Xin, Nonlinear stability of rarefaction waves for compressible
NavierStokes equations, Comm. Math. Phys. 118
(1988), no. 3, 451–465. MR 958806
(89i:35112)
 22.
TaiPing
Liu and Zhouping
Xin, Pointwise decay to contact discontinuities for systems of
viscous conservation laws, Asian J. Math. 1 (1997),
no. 1, 34–84. MR 1480990
(99b:35138)
 23.
TaiPing
Liu and Yanni
Zeng, Large time behavior of solutions for general quasilinear
hyperbolicparabolic systems of conservation laws, Mem. Amer. Math.
Soc. 125 (1997), no. 599, viii+120. MR 1357824
(97g:35107), http://dx.doi.org/10.1090/memo/0599
 24.
Akitaka
Matsumura and Takaaki
Nishida, The initial value problem for the equations of motion of
viscous and heatconductive gases, J. Math. Kyoto Univ.
20 (1980), no. 1, 67–104. MR 564670
(81g:35108)
 25.
Akitaka
Matsumura and Kenji
Nishihara, On the stability of travelling wave solutions of a
onedimensional model system for compressible viscous gas, Japan J.
Appl. Math. 2 (1985), no. 1, 17–25. MR 839317
(87j:35335a), http://dx.doi.org/10.1007/BF03167036
 26.
Akitaka
Matsumura and Kenji
Nishihara, Asymptotics toward the rarefaction waves of the
solutions of a onedimensional model system for compressible viscous
gas, Japan J. Appl. Math. 3 (1986), no. 1,
1–13. MR
899210 (88e:35173), http://dx.doi.org/10.1007/BF03167088
 27.
Akitaka
Matsumura and Kenji
Nishihara, Global stability of the rarefaction wave of a
onedimensional model system for compressible viscous gas, Comm. Math.
Phys. 144 (1992), no. 2, 325–335. MR 1152375
(93d:76056)
 28.
Akitaka
Matsumura and Kenji
Nishihara, Global asymptotics toward the rarefaction wave for
solutions of viscous 𝑝system with boundary effect, Quart.
Appl. Math. 58 (2000), no. 1, 69–83. MR 1738558
(2001c:35037)
 29.
Kenji
Nishihara, Tong
Yang, and Huijiang
Zhao, Nonlinear stability of strong rarefaction waves for
compressible NavierStokes equations, SIAM J. Math. Anal.
35 (2004), no. 6, 1561–1597 (electronic). MR 2083790
(2005h:35232), http://dx.doi.org/10.1137/S003614100342735X
 30.
Kenji
Nishihara, Huijiang
Zhao, and Yinchuan
Zhao, Global stability of strong rarefaction waves of the JinXin
relaxation model for the 𝑝system, Comm. Partial Differential
Equations 29 (2004), no. 910, 1607–1634. MR 2103847
(2006a:35198), http://dx.doi.org/10.1081/PDE200037772
 31.
Mari
Okada and Shuichi
Kawashima, On the equations of onedimensional motion of
compressible viscous fluids, J. Math. Kyoto Univ. 23
(1983), no. 1, 55–71. MR 692729
(85c:76050)
 32.
Denis
Serre, Relaxations semilinéaire et cinétique des
systèmes de lois de conservation, Ann. Inst. H. Poincaré
Anal. Non Linéaire 17 (2000), no. 2,
169–192 (French, with English and French summaries). MR 1753092
(2001g:35159), http://dx.doi.org/10.1016/S02941449(99)001055
 33.
Joel
Smoller, Shock waves and reactiondiffusion equations, 2nd
ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 258, SpringerVerlag, New York, 1994.
MR
1301779 (95g:35002)
 34.
G.
B. Whitham, Linear and nonlinear waves, WileyInterscience
[John Wiley & Sons], New YorkLondonSydney, 1974. Pure and Applied
Mathematics. MR
0483954 (58 #3905)
 35.
Zhou
Ping Xin, Zero dissipation limit to rarefaction waves for the
onedimensional NavierStokes equations of compressible isentropic
gases, Comm. Pure Appl. Math. 46 (1993), no. 5,
621–665. MR 1213990
(94c:76067), http://dx.doi.org/10.1002/cpa.3160460502
 1.
 K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (2) (1977), 373392. MR 0430536 (55:3541)
 2.
 R. Duan, X. Ma, and H. J. Zhao, A case study of global stability of strong rarefaction waves for hyperbolic conservation laws with artificial viscosity. J. Differential Equations 228 (1) (2006), 259284. MR 2254431 (2007d:35178)
 3.
 D. Hoff, Global solutions of the equations of onedimensional, compressible flow with large data and forces, and with differing end states. Z. Angew. Math. Phys. 49 (5) (1998), 774785. MR 1652200 (99m:35186)
 4.
 D. Hoff and J. A. Smoller, Solutions in the large for certain nonlinear parabolic systems. Ann. Inst. H. Poincaré Analyse Non Linéaire 2 (1985), 213235. MR 797271 (87b:35078)
 5.
 L. Hsiao and S. Jiang, Nonlinear HyperbolicParabolic Coupled Systems. In: Handbook of Differential Equations, Vol. 1: Evolutionary Equations. Chapter 4, PP287384. Elsevier, 2004. MR 2103699 (2005j:35181)
 6.
 L. Hsiao, R. H. Pan, Zero relaxation limit to centered rarefaction waves for a ratetype viscoelastic system. J. Differential Equations 157 (1) (1999), 2040. MR 1710012 (2000j:35183)
 7.
 F. M. Huang, A. Matsumura, and Z. P. Xin, Stability of contact discontinuities for the 1D compressible NavierStokes equations. Arch. Rational Mech. Anal. 179 (1) (2006), 5577. MR 2208289 (2007a:35119)
 8.
 F. M. Huang, Z. P. Xin, and T. Yang, Contact discontinuity with general perturbations for gas motions. Preprint 2004.
 9.
 A. M. Ilin and O. A. Oleĭnik, Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Amer. Math. Soc. Transl. Ser. 2 42 (1964), 1923.
 10.
 A. Jeffrey and H. J. Zhao, Global existence and optimal temporal decay estimates for systems of parabolic conservation laws. I: The onedimensional case. Appl. Anal. 70 (12) (1998), 175193; II. The multidimensional case. J. Math. Anal. Appl. 217 (1998), 597623. MR 1671563 (99m:35102)
 11.
 S. Jiang, G. X. Ni, and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the NavierStokes equations of onedimensional compressible heatconducting fluids. SIAM J. Math. Anal. 38 (2) (2006), 368384. MR 2237152 (2007e:35228)
 12.
 S. Jiang and R. Racke, Evolution Equations in Thermoelasticity. Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics Vol. 112. Chapman and Hall/CRC Press, 2000. MR 1774100 (2001g:74013)
 13.
 S. Jiang and P. Zhang, Global weak solutions to the NavierStokes equations for a 1D viscous polytropic ideal gas. Quart. Appl. Math. 61 (2003), 435449. MR 1999830 (2004e:76092)
 14.
 Y. Kagei and S. Kawashima, Local solvability of initial boundary value problem for a quasilinear hyperbolicparabolic system. J. Hyperbolic Diff. Equations 3 (2) (2006), 195232. MR 2229854 (2007c:35120)
 15.
 J. Kanel, On a model system of equations of onedimensional gas motion (in Russian). Differencialnye Uravnenija 4 (1968), 721734. MR 0227619 (37:3203)
 16.
 S. Kawashima, Systems of a HyperbolicParabolic Composite, with Applications to the Equations of Magnetohydrodynamics. Thesis, Kyoto University, 1985.
 17.
 S. Kawashima and A. Matsumura, Asymptotic stability of travelling wave solutions of systems for onedimensional gas motion. Commun. Math. Phys. 101 (1985), 97127. MR 814544 (87h:35035)
 18.
 S. Kawashima, A. Matsumura, and K. Nishihara, Asymptotic behaviour of solutions for the equations of a viscous heatconductive gas. Proc. Japan Acad. Ser. A 62 (1986), 249252. MR 868811 (87k:35036)
 19.
 S. Kawashima and T. Nishida, Global solutions to the initial value problem for the equations of onedimensional motion of viscous polytropic gases. J. Math. Kyoto Univ. 21 (4) (1983), 825837. MR 637519 (84d:76042)
 20.
 T. P. Liu, Shock waves for compressible NavierStokes equations are stable. Commun. Pure Appl. Math. 39 (1986), 565594. MR 849424 (87j:35247)
 21.
 T. P. Liu and Z. P. Xin, Nonlinear stability of rarefaction waves for compressible NavierStokes equations. Comm. Math. Phys. 118 (1988), 451465. MR 958806 (89i:35112)
 22.
 T. P. Liu and Z. P. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J. Math. 1 (1997), 3484. MR 1480990 (99b:35138)
 23.
 T. P. Liu and Y. N. Zeng, Large time behavior of solutions for general quasilinear hyperbolicparabolic systems of conservation laws. Mem. Amer. Math. Soc. 125 (599) (1997), 1120. MR 1357824 (97g:35107)
 24.
 A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases. J. Math. Kyoto Univ. 26 (1980), 67104. MR 564670 (81g:35108)
 25.
 A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a onedimensional model system for compressible viscous gas. Japan J. Appl. Math. 2 (1985), 1725. MR 839317 (87j:35335a)
 26.
 A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a onedimensional model system for compressible viscous gas. Japan J. Appl. Math. 3 (1986), 113. MR 899210 (88e:35173)
 27.
 A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a onedimensional model system for compressible viscous gas. Comm. Math. Phys. 144 (1992), 325335. MR 1152375 (93d:76056)
 28.
 A. Matsumura and K. Nishihara, Global asymptotics toward the rarefaction wave for solutions of viscous system with boundary effect. Quart. Appl. Math. 58 (2000), 6983. MR 1738558 (2001c:35037)
 29.
 K. Nishihara, T. Yang, and H. J. Zhao, Nonlinear stability of strong rarefaction waves for compressible NavierStokes equations. SIAM J. Math. Anal. 35 (6) (2004), 15611597. MR 2083790 (2005h:35232)
 30.
 K. Nishihara, H. J. Zhao, and Y. C. Zhao, Global stability of strong rarefaction waves of the JinXin relaxation model for the system. Comm. Part. Diff. Equs. 29 (9 & 10) (2204), 16071634. MR 2103847 (2006a:35198)
 31.
 M. Okada and S. Kawashima, On the equations of onedimensional motion of compressible viscous fluids. J. Math. Kyoto Univ. 23 (1) (1983), 5571. MR 692729 (85c:76050)
 32.
 D. Serre, Relaxations semilinéaire et cinétique des systèmes de lois de conservation. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(2) (2000), 169192. MR 1753092 (2001g:35159)
 33.
 J. A. Smoller, Shock Waves and ReactionDiffusion Equations. SpringerVerlag, 1994. MR 1301779 (95g:35002)
 34.
 G. Whitham, Linear and Nonlinear Waves. WileyInterscience, 1974. MR 0483954 (58:3905)
 35.
 Z. P. Xin, Zero dissipation limit to rarefaction waves for the onedimensional NavierStokes equations of compressible isentropic gases. Comm. Pure Appl. Math. 46 (1993), 621665. MR 1213990 (94c:76067)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
35L65,
35L60
Retrieve articles in all journals
with MSC (2000):
35L65,
35L60
Additional Information
Ran Duan
Affiliation:
Laboratory of Nonlinear Analysis, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People’s Republic of China
Hongxia Liu
Affiliation:
Department of Mathematics, Jinan University, Guangzhou 510632, People’s Republic of China
Huijiang Zhao
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of China
Email:
hhjjzhao@hotmail.com
DOI:
http://dx.doi.org/10.1090/S0002994708046370
PII:
S 00029947(08)046370
Keywords:
Rarefaction waves,
compressible NavierStokes equations,
global stability,
large initial perturbation.
Received by editor(s):
April 9, 2007
Published electronically:
August 15, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
