Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Transcendental lattices and supersingular reduction lattices of a singular $ K3$ surface


Author: Ichiro Shimada
Journal: Trans. Amer. Math. Soc. 361 (2009), 909-949
MSC (2000): Primary 14J28; Secondary 14J20, 14H52
DOI: https://doi.org/10.1090/S0002-9947-08-04560-1
Published electronically: July 30, 2008
MathSciNet review: 2452829
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $ K3$ surface $ X$ defined over a field $ k$ of characteristic 0 is called singular if the Néron-Severi lattice $ \mathrm{NS}(X)$ of $ X\otimes \overline{k}$ is of rank $ 20$. Let $ X$ be a singular $ K3$ surface defined over a number field $ F$. For each embedding $ \sigma: F\hookrightarrow \mathbb{C}$, we denote by $ T(X^\sigma)$ the transcendental lattice of the complex $ K3$ surface $ X^\sigma$ obtained from $ X$ by $ \sigma$. For each prime $ \mathfrak{p}$ of $ F$ at which $ X$ has a supersingular reduction $ X_{\mathfrak{p}}$, we define $ L(X, \mathfrak{p})$ to be the orthogonal complement of $ \mathrm{NS}(X)$ in $ \mathrm{NS}(X_{\mathfrak{p}})$. We investigate the relation between these lattices $ T(X\sp\sigma)$ and $ L(X,\mathfrak{p})$. As an application, we give a lower bound for the degree of a number field over which a singular $ K3$ surface with a given transcendental lattice can be defined.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin.
    Supersingular $ K3$ surfaces.
    Ann. Sci. École Norm. Sup. (4), 7:543-567 (1975), 1974. MR 0371899 (51:8116)
  • 2. P. Berthelot, A. Grothendieck, and L. L. Illusie.
    Théorie des intersections et théorème de Riemann-Roch.
    Springer-Verlag, Berlin, 1971.
    Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6), Lecture Notes in Mathematics, Vol. 225. MR 0354655 (50:7133)
  • 3. N. Bourbaki.
    Éléments de mathématique. Algèbre. Chapitre 8: Modules et anneaux semi-simples.
    Actualités Sci. Ind. no. 1261. Hermann, Paris, 1958. MR 0098114 (20:4576)
  • 4. J. W. S. Cassels.
    Rational quadratic forms, volume 13 of London Mathematical Society Monographs.
    Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978. MR 522835 (80m:10019)
  • 5. H. Cohen.
    A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics.
    Springer-Verlag, Berlin, 1993. MR 1228206 (94i:11105)
  • 6. F. R. Cossec and I. V. Dolgachev.
    Enriques surfaces. I, volume 76 of Progress in Mathematics.
    Birkhäuser Boston Inc., Boston, MA, 1989. MR 986969 (90h:14052)
  • 7. D. A. Cox.
    Primes of the form $ x\sp 2 + ny\sp 2$.
    A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989. MR 1028322 (90m:11016)
  • 8. M. Deuring.
    Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
    Abh. Math. Sem. Hansischen Univ., 14:197-272, 1941. MR 0005125 (3:104f)
  • 9. D. R. Dorman.
    Global orders in definite quaternion algebras as endomorphism rings for reduced CM elliptic curves.
    In Théorie des nombres (Quebec, PQ, 1987), pages 108-116. de Gruyter, Berlin, 1989. MR 1024555 (90j:11043)
  • 10. B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, and A. Vistoli.
    Fundamental algebraic geometry, Grothendieck's FGA explained. volume 123 of Mathematical Surveys and Monographs.
    American Mathematical Society, Providence, RI, 2005. MR 2222646 (2007f:14001)
  • 11. W. Fulton.
    Rational equivalence on singular varieties.
    Inst. Hautes Études Sci. Publ. Math., 45:147-167, 1975. MR 0404257 (53:8060)
  • 12. W. Fulton.
    Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
    Springer-Verlag, Berlin, second edition, 1998. MR 1644323 (99d:14003)
  • 13. B. H. Gross and D. B. Zagier.
    On singular moduli.
    J. Reine Angew. Math., 355:191-220, 1985. MR 772491 (86j:11041)
  • 14. A. Grothendieck.
    Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957-1962.].
    Secrétariat mathématique, Paris, 1962. MR 0146040 (26:3566)
  • 15. A. Grothendieck.
    Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $ (SGA$ $ 2)$.
    North-Holland Publishing Co., Amsterdam, 1968,
    Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2, also available from http://arxiv.org/abs/math.AG/0511279. MR 2171939 (2006f:14004)
  • 16. R. Hartshorne.
    Algebraic geometry.
    Springer-Verlag, New York, 1977.
    Graduate Texts in Mathematics, No. 52. MR 0463157 (57:3116)
  • 17. H. Inose.
    Defining equations of singular $ K3$ surfaces and a notion of isogeny.
    In Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pages 495-502, Tokyo, 1978. Kinokuniya Book Store. MR 578868 (81h:14021)
  • 18. S. Lang.
    Elliptic functions, volume 112 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1987.
    With an appendix by J. Tate. MR 890960 (88c:11028)
  • 19. D. Mumford.
    Lectures on curves on an algebraic surface.
    With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59. Princeton University Press, Princeton, N.J., 1966. MR 0209285 (35:187)
  • 20. V. V. Nikulin.
    Integer symmetric bilinear forms and some of their geometric applications.
    Math USSR-Izv. 14 (1979), no. 1, 103-167 (1980). MR 525944 (80j:10031)
  • 21. I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič.
    Torelli's theorem for algebraic surfaces of type $ K3$.
    Izv. Akad. Nauk SSSR Ser. Mat., 35:530-572, 1971.
    Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 516-557.
  • 22. I. Reiner.
    Maximal orders, volume 28 of London Mathematical Society Monographs. New Series.
    The Clarendon Press, Oxford University Press, Oxford, 2003. MR 1972204 (2004c:16026)
  • 23. A. N. Rudakov and I. R. Shafarevich.
    Surfaces of type $ K3$ over fields of finite characteristic.
    In Current problems in mathematics, Vol. 18, pages 115-207. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981.
    Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 657-714. MR 633161 (83c:14027)
  • 24. M. Schütt.
    Fields of definition for singular $ K3$ surfaces.
    Commun. Number Theory Phys. 1 (2007), 307-321. MR 2346573
  • 25. I. R. Shafarevich.
    On the arithmetic of singular $ K3$-surfaces.
    In Algebra and analysis (Kazan, 1994), pages 103-108. de Gruyter, Berlin, 1996. MR 1465448 (98h:14041)
  • 26. I. Shimada.
    On normal $ K3$ surfaces. Michigan Math. J. 55 (2007), no. 2, 395-416. MR 2369942
  • 27. I. Shimada.
    On arithmetic Zariski pairs in degree $ 6$. Preprint, 2006. To appear in Adv. Geom.
    http://arxiv.org/abs/math.AG/0611596.
  • 28. I. Shimada.
    Non-homeomorphic conjugate complex varieties.
    Preprint, 2007. http://arxiv.org/abs/math.AG/0701115.
  • 29. I. Shimada and De-Qi Zhang.
    Dynkin diagrams of rank $ 20$ on supersingular $ K3$ surfaces.
    Preprint, 2005. http://www.math.sci.hokudai.ac.jp/~shimada/preprints.html.
  • 30. T. Shioda and H. Inose.
    On singular $ K3$ surfaces.
    In Complex analysis and algebraic geometry, pages 119-136. Iwanami Shoten, Tokyo, 1977. MR 0441982 (56:371)
  • 31. T. Shioda.
    Correspondence of elliptic curves and Mordell-Weil lattices of certain $ K3$ surfaces.
    Preprint.
  • 32. T. Shioda.
    The elliptic $ K3$ surfaces with with a maximal singular fibre.
    C. R. Math. Acad. Sci. Paris, 337(7):461-466, 2003. MR 2023754 (2004j:14046)
  • 33. T. Shioda and N. Mitani.
    Singular abelian surfaces and binary quadratic forms.
    In Classification of algebraic varieties and compact complex manifolds, pages 259-287. Lecture Notes in Math., Vol. 412. Springer, Berlin, 1974. MR 0382289 (52:3174)
  • 34. J. H. Silverman.
    The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1986. MR 817210 (87g:11070)
  • 35. J. H. Silverman.
    Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1994. MR 1312368 (96b:11074)
  • 36. J. Tate.
    Endomorphisms of abelian varieties over finite fields.
    Invent. Math., 2:134-144, 1966. MR 0206004 (34:5829)
  • 37. A. Weil.
    Variétés abéliennes et courbes algébriques.
    Actualités Sci. Ind., no. 1064, Publ. Inst. Math. Univ. Strasbourg 8 (1946). Hermann & Cie., Paris, 1948. MR 0029522 (10:621d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J28, 14J20, 14H52

Retrieve articles in all journals with MSC (2000): 14J28, 14J20, 14H52


Additional Information

Ichiro Shimada
Affiliation: Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Address at time of publication: Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
Email: shimada@math.sci.hokudai.ac.jp, shimada@math.sci.hiroshima-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-08-04560-1
Received by editor(s): November 8, 2006
Received by editor(s) in revised form: April 16, 2007
Published electronically: July 30, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society